polynomial optimization on the sphere and quantum
play

Polynomial optimization on the sphere and quantum entanglement - PowerPoint PPT Presentation

Polynomial optimization on the sphere and quantum entanglement testing Kun Fang Joint work with Hamza Fawzi Presented at ICCOPT 2019, Berlin Talk Outline Polynomial Optimization and SOS Hierarchy An improved Convergence Rate Main


  1. Polynomial optimization on the sphere and quantum entanglement testing Kun Fang Joint work with Hamza Fawzi Presented at ICCOPT 2019, Berlin

  2. Talk Outline ◎ Polynomial Optimization and SOS Hierarchy ◎ An improved Convergence Rate Main Result and Proof Strategy ◎ Relation to Entanglement Testing SOS Hierarchy (polynomial) v.s. DPS Hierarchy (quantum) ◎ Summary and Discussions

  3. Polynomial Optimization on the Sphere

  4. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Polynomial Optimization on the Sphere Q Given a multivariate polynomial with p ( x ) x = ( x 1 , · · · , x d ) Computing the maximal value p max = max x ∈ S d − 1 p ( x ) Over the unit sphere S d − 1 = x ∈ R d : x 2 � 1 + · · · + x 2 d = 1 Applications: o the largest stable/independent set of a graph o Degree 3 polynomial opt. on the sphere (e.g. [Nesterov’03, De Klerk’08]) o 2 → 4 norm of a matrix A, p ( x ) = k Ax k 4 4 o Degree 4 polynomial opt. on the sphere (e.g. [Barak et al.’12]) o Best Separable State problem in quantum information theory o Degree 4 polynomial opt. on the product of spheres (e.g. [Barak-Kothari-Steurer’17]) o …

  5. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Polynomial Optimization on the Sphere Q Given a multivariate polynomial with p ( x ) x = ( x 1 , · · · , x d ) Computing the maximal value p max = max x ∈ S d − 1 p ( x ) Over the unit sphere S d − 1 = x ∈ R d : x 2 � 1 + · · · + x 2 d = 1 Difficulty: o Degree = 2, efficiently solved as an eigenvalue problem; o Degree > 2, NP-hard in general! Solution: o Sum-of-square (SOS) hierarchy [Parrilo’00; Lasserre’01] where each level is efficiently computable by semidefinite program

Recommend


More recommend