l ecture 5 d ynamical s ystems 4
play

L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO - PowerPoint PPT Presentation

15-382 C OLLECTIVE I NTELLIGENCE S18 L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, = , solutions were in the


  1. 15-382 C OLLECTIVE I NTELLIGENCE – S18 L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO

  2. L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, 𝑦̇ = 𝑏𝑦, solutions Β§ were in the form: 𝑦 𝑒 = 𝑦 4 𝑓 67 Β§ The sign of a would affect stability and asymptotic behavior: x = 0 is an asymptotically stable solution if a < 0, while x = 0 is an unstable solution if a > 0, since other solutions depart from x = 0 in this case. Does a multi-dimensional generalization of the form π’š 𝑒 = π’š 4 𝑓 𝑩7 hold? Β§ What about operator 𝑩 ? Β§ A two-dimensional example: π’š = 𝑦 $ βˆ’4 βˆ’3 𝑦̇ $ = βˆ’4𝑦 $ βˆ’ 3𝑦 ) 𝐡 = π’š (0) = (1,1) 2 3 𝑦̇ ) = 2𝑦 $ + 3𝑦 ) 𝑦 ) Eigenvalues and Eigenvectors of 𝐡 : Β§ 1 3 πœ‡ $ = 2, 𝒗 $ = πœ‡ ) = βˆ’3, 𝒗 ) = βˆ’2 βˆ’1 (real, negative) (real, positive) 2

  3. S OLUTION ( EIGENVALUES , EIGENVECTORS ) The eigenvector equation: 𝐡𝒗 = πœ‡π’— Β§ Let’s set the solution to be π’š 𝑒 = 𝑓 97 𝒗 and lets’ verify that it Β§ satisfies the relation π’šΜ‡ 𝑒 = π΅π’š Multiplying by 𝐡 : π΅π’š(𝑒) = 𝑓 97 𝐡𝒗 , but since 𝒗 is an eigenvector: Β§ π΅π’š 𝑒 = 𝑓 97 𝐡𝒗 = 𝑓 97 (πœ‡π’— ) 𝒗 is a fixed vector, that doesn’t depend on 𝑒 β†’ if we take π’š 𝑒 = 𝑓 97 𝒗 Β§ and differentiate it: π’šΜ‡ 𝑒 = πœ‡π‘“ 97 𝒗 , which is the same as π΅π’š 𝑒 above Each eigenvalue-eigenvector pair ( πœ‡ , 𝒗 ) of 𝐡 leads to a solution of π’šΜ‡ 𝑒 = π΅π’š , taking the form: π’š 𝑒 = 𝑓 97 𝒗 Β§ The general solution to the linear ODE is obtained by the linear combination of the π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) individual eigenvalue solutions (since πœ‡ $ β‰  πœ‡ ), 𝒗 𝟐 and 𝒗 πŸ‘ are linearly independent) 3

  4. S OLUTION ( EIGENVALUES , EIGENVECTORS ) π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) 𝑦 ) π’š 0 = (1,1) (1,1) 1,1 = 𝑑 $ (1,βˆ’2) + 𝑑 ) (3,βˆ’1) 𝒗 πŸ‘ Γ  𝑑 $ = βˆ’4/5 𝑑 ) = 3/5 𝑦 $ 𝒗 $ π’š 𝑒 = βˆ’4/5𝑓 )7 𝒗 $ + 3/5𝑓 FG7 𝒗 ) 𝑦 $ 𝑒 = βˆ’ 4 5 𝑓 )7 + 9 5 𝑓 FG7 𝑦 ) 𝑒 = 8 5 𝑓 )7 βˆ’ 3 5 𝑓 FG7 Saddle equilibrium (unstable) Except for two solutions that approach the origin along the direction of the Β§ eigenvector 𝒗 ) = (3 , - 1), solutions diverge toward ∞ , although not in finite time Solutions approach to the origin from different direction, to after diverge from it Β§ 4

  5. T WO REAL EIGENVALUES , OPPOSITE SIGNS Β§ The straight lines corresponding 𝑦 ) to 𝒗 $ and 𝒗 πŸ‘ are the trajectories corresponding to all multiples of (1,1) individual eigenvector solutions 𝐷𝑓 97 𝒗 : 𝒗 πŸ‘ 𝑦 $ 𝒗 $ 𝒗 $ : 𝑦 $ 𝑒 1 = 𝑑 $ 𝑓 )7 𝑦 ) 𝑒 βˆ’2 𝒗 ) : 𝑦 $ 𝑒 3 = 𝑑 ) 𝑓 FG7 𝑦 ) 𝑒 βˆ’1 Β§ The slope of a trajectory corresponding to one eigenvalue is constant in N ? O >? ( 𝑦 $ ,𝑦 ) ) Γ  It’s a line in the phase space (e.g., for 𝒗 $ : N > 𝑒 = O >> = βˆ’2 ) The eigenvectors corresponding to the same eigenvalue πœ‡ , together with Β§ the origin (0,0) (which is part of the solution for each individual eigenvalue), form a linear subspace , called the eigenspace of Ξ» The two straight lines are the two eigenspaces, that, as 𝑒 β†’ ∞, play the Β§ role of β€œseparators” for the different behaviors of the system 5

  6. T WO REAL EIGENVALUES , S AME S IGN π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) 𝑦̇ $ = βˆ’2𝑦 $ 𝑦̇ ) = 𝑦 $ βˆ’ 4𝑦 ) Asymptotically Stable or unstable Β§ behavior depending on the sign of πœ‡ $) Node Trajectories either moving away from the Β§ equilibrium to infinite-distant away (when πœ‡ > 0), or moving directly toward, and converge to equilibrium (when πœ‡ < 0). The trajectories that are the eigenvectors Β§ move in straight lines. 6

  7. O NE REAL , REPEATED EIGENVALUE Β§ Case with two linearly independent eigenvectors π’š 𝑒 = 𝑓 9 > 7 (𝑑 $ 𝒗 $ + 𝑑 ) 𝒗 ) ) Β§ Every nonzero solution traces a straight-line trajectory: constant slope, direction given by the linear combination of the eigenvectors It is unstable if the eigenvalue is positive; asymptotically stable if the eigenvalue is negative. Focus Proper node (star point) 7

  8. O NE REAL , REPEATED EIGENVALUE Β§ Case with two linearly independent eigenvectors π’š 𝑒 = 𝑓 9 > 7 (𝑑 $ 𝒗 $ + 𝑑 ) 𝒗 ) ) 8

  9. O NE REAL , REPEATED EIGENVALUE Β§ Case with one linearly independent eigenvectors π’š 𝑒 = 𝑑 $ 𝒗 $ 𝑓 9 > 7 + 𝑑 ) (𝒗 $ 𝑒𝑓 9 > 7 + 𝒗𝑓 9 > 7 ) Positive eigenvalue 𝑦 ) One eigenvalue solution: 𝑓 9 > 7 𝒗 $ Β§ Β§ Need to find another solution, linearly independent From solutions of the form: 𝑒𝑓 9 > 7 𝒗 $ + 𝒗 𝑓 9 > 7 Β§ 𝑦 $ 𝒗 is a generalized eigenvector that can be Β§ determined from 𝐡 βˆ’ πœ‡ $ 𝐽 𝒗 $ = 𝒗 ~ (Node + Spiral) Repulsive focus (Improper node) All solutions except for the equilibrium diverge to infinity Negative eigenvalue 9

  10. I MAGINARY EIGENVALUES Β§ Roots of the characteristic equation are complex numbers: Ξ› Β± = πœ‡ Β± π‘—πœˆ S is also an eigenvalue. Β§ If Ξ› is a complex eigenvalue , then its conjugate Ξ› Β§ If 𝒗 is a complex eigenvector of Ξ›, then 𝒗 S , the complex conjugate of its S entries, is an eigenvector associated to Ξ› Β§ The solutions for the two conjugate eigenvalues: Β§ 𝑓 (9TUV)7 𝒗 = 𝑓 97 𝑓 UV7 𝒗 = 𝑓 97 (cosπœˆπ‘’ + 𝑗 sinπœˆπ‘’)𝒗 Β§ 𝑓 (9FUV)7 𝒗 S = 𝑓 97 𝑓 FUV7 𝒗 S = 𝑓 97 (cos πœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) 𝒗 S 𝒗 𝟐 𝒗 S 𝟐 Let 𝒗 = 𝒗 πŸ‘ , 𝒗 S = S πŸ‘ , 𝑣 $ = 𝛽 $ + 𝑗𝛾 $ , 𝑣 ) = 𝛽 ) + 𝑗𝛾 ) Β§ 𝒗 𝑓 (9TUV)7 𝑣 $ = 𝑓 97 (cosπœˆπ‘’ + 𝑗 sinπœˆπ‘’) (𝛽 $ + 𝑗𝛾 $ ) 𝑓 (9TUV)7 𝒗 = 𝑓 (9TUV)7 𝑣 ) = 𝑓 97 (cos πœˆπ‘’ + 𝑗 sinπœˆπ‘’) (𝛽 ) + 𝑗𝛾 ) ) 𝑓 (9FUV)7 𝑣 b $ = 𝑓 97 (cosπœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) (𝛽 $ βˆ’ 𝑗𝛾 $ ) 𝑓 (9FUV)7 𝒗 S = 𝑓 (9FUV)7 𝑣 b ) = 𝑓 97 (cos πœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) (𝛽 ) βˆ’ 𝑗𝛾 ) ) 10

  11. I MAGINARY EIGENVALUES 𝑓 97 [(𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’) + 𝑗(𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’)] 𝑓 (9TUV)7 𝒗 = 𝑓 97 [(𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’) + 𝑗(𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’)] 𝑓 97 [(𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’) βˆ’ 𝑗(𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’)] 𝑓 (9FUV)7 𝒗 S = v 𝑓 97 [(𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’) βˆ’ 𝑗(𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’)] 𝒁 ) = 𝑓 97 𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’ 𝒁 $ = 𝑓 97 𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’ 𝛾 ) cos πœˆπ‘’ + 𝛽 ) sinπœˆπ‘’ 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’ 𝑓 (9FUV)7 𝒗 S = 𝒁 $ βˆ’ 𝑗𝒁 ) 𝑓 (9TUV)7 𝒗 = 𝒁 $ + 𝑗𝒁 ) Since both sum and difference of 𝒁 $ and 𝒁 ) are solutions, also 𝒁 $ and 𝒁 ) Β§ are solutions; moreover, it can be proved that they are linearly independent π’š 𝑒 = 𝑑 $ 𝒁 $ + 𝑑 ) 𝒁 ) is a general solution (real, combining real solutions) 𝑦 $ 𝑒 = 𝑑 $ 𝑓 97 𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 $ cosπœˆπ‘’ + 𝛽 $ sinπœˆπ‘’ ) 𝑦 ) 𝑒 = 𝑑 $ 𝑓 97 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’) 11

  12. (P URE ) I MAGINARY EIGENVALUES 𝑦̇ $ = 𝑦 ) π’š = 𝑦 $ 0 1 𝑦̇ ) = βˆ’π‘¦ $ 𝐡 = 𝑦 ) βˆ’1 0 Eigenvalues 𝐡 : Β§ 𝑦 ) Ξ› $ = 𝑗, Ξ› ) = βˆ’π‘— ( πœ‡ = 0, 𝜈 = 1) (pure imaginary, conjugate) Eigenvectors : Β§ 𝑦 $ 𝑗 𝒗 = 0 + 𝑗(βˆ’1) βˆ’π‘— 𝒗 S = = 1 1 + 𝑗(0) 1 𝛽 $ = 0, 𝛾 $ = βˆ’1,𝛽 ) = 1,𝛾 ) = 0 𝑦 $ 𝑒 = 𝑑 $ 𝑓 97 𝛽 $ cos πœˆπ‘’ βˆ’ 𝛾 $ sin πœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 $ cosπœˆπ‘’ + 𝛽 $ sin πœˆπ‘’ ) 𝑦 ) 𝑒 = 𝑑 $ 𝑓 97 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sin πœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 ) cosπœˆπ‘’ + 𝛽 ) sin πœˆπ‘’) Center Β§ Periodic solutions General solutions: Β§ Some points initially move farther Β§ 𝑦 $ 𝑒 = 𝑑 $ sin𝑒 βˆ’ 𝑑 ) cos𝑒 away, but not too far away. 𝑦 ) 𝑒 = 𝑑 $ cos𝑒 βˆ’ 𝑑 sin𝑒 The origin is stable but not attracting. Β§ 12

  13. T HE TWO NEIGHBORHOODS OF LYAPUNOUV STABILITY πœ‡ Β± = ±𝑗 πœ‡ Β± = Β±3𝑗 𝑦 ) 𝑦 ) πœ€(𝜁) v v 𝑦 $ 𝜁 𝑦 $ Lyapunov stability needs two neighborhoods, 𝜁,πœ€(𝜁) : In order to have solutions Β§ stay within a neighborhood 𝜻 whose radius is the larger axis of an ellipse, initial conditions must be restricted to a neighborhood πœ€(𝜁) whose radius is no larger than the smaller axis of the solution If the neighborhood πœ€ 𝜁 is equal to the larger axis, then an initial point could be Β§ placed on another, larger orbit, that would not satisfy the requirement to stay within the original neighborhood 𝜁 13

Recommend


More recommend