kinematic design of redundant robotic manipulators that
play

Kinematic Design of Redundant Robotic Manipulators that are - PowerPoint PPT Presentation

Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions Kinematic Design of Redundant Robotic Manipulators that are Optimally Fault Tolerant Presented by: Khaled M. Ben-Gharbia


  1. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Kinematic Design of Redundant Robotic Manipulators that are Optimally Fault Tolerant Presented by: Khaled M. Ben-Gharbia Septmber 8 th , 2014 1/45

  2. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Why Fault Tolerance? Applications hazardous waste cleanup space/underwater exploration anywhere failures are likely or intervention is costly Common failure mode locked actuators 2/45

  3. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Simple Redundant Robot Planar 3DOF ˙  θ 1  � ˙ � x 1 ˙ = J ( θ ) θ 2   x 2 ˙ ˙ θ 3 3/45

  4. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Jacobian ( J ) Matrix 3R planar manipulator Forward Kinematics: x = f ( θ ) x 1 = a 1 cos( θ 1 ) + a 2 cos( θ 1 + θ 2 ) + a 3 cos( θ 1 + θ 2 + θ 3 ) x 2 = a 1 sin( θ 1 ) + a 2 sin( θ 1 + θ 2 ) + a 3 sin( θ 1 + θ 2 + θ 3 ) = ⇒ taking the derivative w.r.t. time x = J ( θ ) ˙ = ⇒ ˙ θ θ 1 + θ 2 + θ 3 Geometrically x 2 θ 1 + θ 2 J 3 × 3 = [ j 1 j 2 j 3 ] = [ z 1 × p 1 z 2 × p 2 z 3 × p 3 ] θ 1 x 1 where z i is the rotation axis, and here it is [0 0 1] T Spatial manipulator � v i � j i = ω i 4/45

  5. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Jacobian ( J ) Matrix 3R planar manipulator Forward Kinematics: x = f ( θ ) j 2 x 1 = a 1 cos( θ 1 ) + a 2 cos( θ 1 + θ 2 ) + a 3 cos( θ 1 + θ 2 + θ 3 ) x 2 = a 1 sin( θ 1 ) + a 2 sin( θ 1 + θ 2 ) + a 3 sin( θ 1 + θ 2 + θ 3 ) = ⇒ taking the derivative w.r.t. time p 2 x = J ( θ ) ˙ = ⇒ ˙ θ θ 1 + θ 2 + θ 3 Geometrically x 2 θ 1 + θ 2 J 3 × 3 = [ j 1 j 2 j 3 ] = [ z 1 × p 1 z 2 × p 2 z 3 × p 3 ] θ 1 x 1 where z i is the rotation axis, and here it is [0 0 1] T Spatial manipulator � v i � j i = ω i 4/45

  6. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Jacobian ( J ) Matrix 3R planar manipulator Forward Kinematics: x = f ( θ ) j 2 x 1 = a 1 cos( θ 1 ) + a 2 cos( θ 1 + θ 2 ) + a 3 cos( θ 1 + θ 2 + θ 3 ) x 2 = a 1 sin( θ 1 ) + a 2 sin( θ 1 + θ 2 ) + a 3 sin( θ 1 + θ 2 + θ 3 ) = ⇒ taking the derivative w.r.t. time p 2 x = J ( θ ) ˙ = ⇒ ˙ θ θ 1 + θ 2 + θ 3 Geometrically x 2 θ 1 + θ 2 J 3 × 3 = [ j 1 j 2 j 3 ] = [ z 1 × p 1 z 2 × p 2 z 3 × p 3 ] θ 1 x 1 where z i is the rotation axis, and here it is [0 0 1] T Spatial manipulator � v i � j i = ω i 4/45

  7. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Kinematic Dexterity Measures: Function of Singular Values of the Jacobian � σ 1 � � cos φ � 0 0 − sin φ V T V = I D = U = 0 σ 2 0 sin φ cos φ 5/45

  8. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Approaching Kinematic Singularities Singularity: σ 2 = 0 Value of σ m is a common dexterity measure 6/45

  9. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Optimal Fault Tolerant Configurations for Locked Joints Failures Fault-free Jacobian: J m × n = [ j 1 j 2 . . . j n ] Failure at joint f : f J m × n − 1 = [ j 1 j 2 . . . j f − 1 j f +1 . . . j n ] f J = � m f σ i f ˆ f ˆ v T u i i =1 i f σ m Worst-case remaining dexterity: K = min n f =1 � n − m Isotropic & Optimal J : K opt = σ for all f n 7/45

  10. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Isotropic and Optimally Fault Tolerant Jacobian equal σ i ’s equal f σ m for all f equal � j i � for all i Example: 2 × 3 isotropic and optimally fault tolerant J :  � � �  2 1 1  − 3 6 6 J = [ j 1 j 2 j 3 ] =  � � 1 1 0 − 2 2 � T � � � � 1 1 1 Null space equally distributed: ˆ n J = 3 3 3 8/45

  11. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Example: 2 × 3 Optimally Fault Tolerant Jacobian j 3 120° j 1 120° 120° j 2 � f σ 2 = 1 Remaining dexterity: K opt = 3 , for all f 9/45

  12. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Example: 2 × 3 Optimally Fault Tolerant Jacobian j 3 p 3 p 2 120° j 1 120° 120° j 2 p 1 � f σ 2 = 1 Remaining dexterity: K opt = 3 , for all f 9/45

  13. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Example: 2 × 3 Optimally Fault Tolerant Jacobian j 3 p 3 p 2 120° j 1 120° 120° p 1 j 2 � f σ 2 = 1 Remaining dexterity: K opt = 3 , for all f 9/45

  14. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Different Optimally Fault Tolerant Jacobians Sign change and permuting columns do not affect the isotropy and the optimally fault tolerant properties of J , e.g. But each new J may belong to a different manipulator 10/45

  15. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � Goal of This Research Show that multiple different manipulators possess the same desired local properties described by a Jacobian (designed to be optimally fault-tolerant) Study optimally fault tolerant Jacobians for different task space dimensions Illustrate the difference between these manipulators in terms of their global fault tolerant properties 11/45

  16. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � 3DOF Planar Manipulators The total possible Jacobians are 48 (2 3 × 3!) y y � j ✁ j ✂ ] � ✄ j ✁ j ✂ ] [ j [ j 2 2 2 � j ✂ j ✁ ] 2 � ✄ j ✂ j ✁ ] ( 0 , ) [ j ( 0 , ) [ j 3 3 3 3 All of these Jacobians 2 2 2 2 3 3 -3 -3 correspond to only 4 different -2 -2 1 1 x x -1 -1 2 2 2 ( − 0 , ) ( − 0 , ) 3 3 2 3 3 2 3 manipulators -2 -3 -2 2 -3 3 � j ✁ j ✂ ] � -j ✁ j ✂ ] -[ j -[ j ✁ ] � j ✂ j ✁ ] � -j ✂ j -[ j -[ j Link lengths: (a) (b) y y � j ✁ ✄ j ✂ ] � -j ✁ ✄ j ✂ ] [ j [ j 2 2 2 � j ✂ -j ✁ ] 2 � -j ✂ -j ✁ ] ( 0 , ) [ j ( 0 , ) [ j 3 3 3 3 2 2 Robot a 1 a 2 a 3 2 2 3 3 -3 -3 1 L s L s L s -2 -2 1 1 x x -1 -1 2 2 2 L s L l L s ( − 0 , ) ( − 0 , ) 3 3 2 3 3 2 3 L l L s L s -2 2 -3 -2 2 -3 3 3 � j ✁ ✄ j ✂ ] � -j ✁ ✄ j ✂ ] -[ j -[ j 4 L l L l L s � j ✂ -j ✁ ] � -j ✂ -j ✁ ] -[ j -[ j (c) (d) √ � L s = 2 / 3 and L l = 2 12/45

  17. Introduction Kinematics Fault Tolerance Goal 3R Planar 4R Planar To Spatial 4R Spatial 7R Spatial Conclusions � 3DOF Planar Manipulators The total possible Jacobians are 48 (2 3 × 3!) y y 2 2 � j ✁ ] � j ✁ j [ j ✂ ] [ j ✂ -j 2 -3 2 -3 2 � j ✁ ] 2 � -j ✁ j 3 [ j ✂ j 3 [ j ✂ ] ( − , ) ( − , ) 2 4 2 4 1 1 2 2 All of these Jacobians -3 -3 2 2 3 3 2 2 -1 x -1 x correspond to only 4 different 2 2 1 1 -2 -2 3 3 3 3 manipulators -2 -2 -1 2 -1 2 2 2 3 3 ( , − ) ( , − ) 2 4 � j ✁ ] 2 4 � j ✁ j -[ j ✂ ] -[ j ✂ -j 3 3 � j ✁ ] � -j ✁ j -[ j ✂ j -[ j ✂ ] (a) (b) Link lengths: y y 2 � -j ✁ ] 2 � -j ✁ ] [ j [ j ✂ -j ✂ j 2 2 -3 � j ✁ -j -3 � -j ✁ -j 2 2 3 3 [ j ✂ ] [ j ✂ ] ( − , ) ( − , ) 2 4 2 4 1 1 2 2 2 2 Robot a 1 a 2 a 3 -3 3 -3 3 2 2 3 3 2 2 1 L s L s L s -1 x -1 x 1 1 -2 -2 2 L s L l L s 3 3 -2 -1 -2 -1 2 2 2 3 2 3 ( , ) ( , − ) − 3 L l L s L s � -j ✁ ] 2 4 � -j ✁ ] 2 4 -[ j -[ j ✂ j ✂ -j 3 3 � -j ✁ -j � j ✁ -j -[ j ✂ ] -[ j ✂ ] 4 L l L l L s (c) (d) √ � L s = 2 / 3 and L l = 2 12/45

Recommend


More recommend