30/11/2016 Kick ‐ start development of green energy sources Airborne Geothermal Exploration Presented by Joey Li Ze Ying and Dr. Holger Eichstaedt Objectives • Fast track the geothermal exploration affords • Reduce the costs for geophysics exploration and deposit estimations • Have higher probability of success in drilling of explorations and preproduction wells • Have data also prepared for – Preliminary Planning and Approvals – Engineering planning and construction – Environmental Impact Assessment 1
30/11/2016 Theoretical background • Hydrothermal ‐ heat ‐ carrier fluid, liquid water or steam depends on the pressure and temperature. 1 to 10km deep – Lidar, Hyperspectral TIR LW • Geopressurizaded ‐ similar to hydrothermal but in deeper places, heat ‐ carrier fluid usually between 100 and 200ºC, 1000 bars and are very salty – Lidar, Broadband Thermal or Hyperspectral TIR LW • Hot stones ‐ waterproof stones with a temperature between 100 and 300ºC and next to the magmatic bags ‐ Hyperspectral TIR LW 2
30/11/2016 Technical solution • Identification of the basic terrain structures • Detection of the geological fault lines • Evaluate these fault lines in their properties as of • are they still thermal active • are there clay minerals around the fault line on the surface • are their carbon monoxide and sulphurous gases coming out of the fault lines Technical solution • Multisensory airborne approach combining required sensors in one flight: – Topographic high power airborne Lidar systems with full waveform data collection to penetrate also rainforest structures – Reflective Hyperspectral sensor in the visible to short wave infrared band (400 to 2500nm) – Thermal Hyperspectral sensor (7600 to 11800nm) 3
30/11/2016 Positioning of the technical solution of airborne operations • Satellite data for area detection, but not capable of identifying details for planning – very suitable to identify the area of interest for the airborne operations • Airborne operation (typically 50 to 500 sqkm) • Geophysics and ground exploration work on the identified thermal potential areas after the airborne survey • Drill operations for exploration and semiproduction 4
30/11/2016 Detection of Fault lines • Topographic mapping of the terrain using a high power Lidar system – Lidar in IR in 1064nm, class 3 eyesafe – Flying height: 1500m – Swath width (overlap 70%): 1000m – Point densities: 8 per sqm for topography • Productivity: approx. 30 to 50 sqkm/flight hour 5
30/11/2016 Verification of thermal properties of the fault line • Usage of the thermal hyperspectral sensor – Spectral resolution: brightness temperature function with correction of the emissivity – Spatial resolution 2m, thermal 0.1K corrected • Data fusion with Lidar for “destriping” of vegetation 6
30/11/2016 Mapping of clay minerals • Usage of Hyperspectral VNIR and SWIR into the solution for mapping of land vegetation, soils, detailed land use, forestry and agricultural parameters, geotechnical facts, pollution on land – Flying height: still 600m – Same flight as dual Lidar solution – Spectral resolution: 416 bands in 400 to 2500nm – Spatial resolution: 1m 7
30/11/2016 General concept: Reflectance Material absorbs and reflect specific wavelength of light • Identify materials by their spectral signature • More reflectance More reflectance More reflectance Less reflectance Less reflectance Less reflectance 8
30/11/2016 T y p e S i l i c a t e S t r u c t u r e Mi n e r a l G r o u p E x a m p l e V I S N I R R e s p o n s e S WI R R e s p o n s e T I R R e s p o n s e A m p h i b o l e A c t i n o l i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e I n o s i l i c a t e s P y r o x e n e D i o p s i d e G o o d Mo d e r a t e G o o d C y c l o s i l i c a t e s T o u r m a l i n e E l b a i t e N o n - D i a g n o s i t i c G o o d G o o d G a r n e t G r o s s u l a r Mo d e r a t e N o n - D i a g n o s i t i c Mo d e r a t e N e s o s i l i c a t e s O l i v i n e F o r s t e r i t e G o o d N o n - D i a g n o s i t i c Mo d e r a t e s S o r o s i l i c a t e s E p i d o t e E p i d o t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e e t a c i Mi c a Mu s c o v i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e l i S C h l o r i t e C l i n o c h l o r e N o n - D i a g n o s i t i c G o o d Mo d e r a t e P h y l l o s i l i c a t e s I l l i t e N o n - D i a g n o s i t i c G o o d G o o d C l a y Mi n e r a l s K a o l i n i t e N o n - D i a g n o s i t i c G o o d G o o d O r t h o c l a s e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c G o o d F e l d s p a r T e c t o s i l i c a t e s A l b i t e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c G o o d S i l i c a Q u a r t z N o n - D i a g n o s i t i c I n f e r r e d G o o d C a l c i t e C a l c i t e N o n - D i a g n o s i t i c Mo d e r a t e G o o d C a r b o n a t e s D o l o m i t e D o l o m i t e N o n - D i a g n o s i t i c Mo d e r a t e G o o d H y d r o x i d e s G i b b s i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e A l u n i t e A l u n i t e Mo d e r a t e G o o d Mo d e r a t e S u l p h a t e s s e G y p s u m N o n - D i a g n o s i t i c G o o d G o o d t a c i B o r a t e s B o r a x N o n - D i a g n o s i t i c Mo d e r a t e ? l i S - C h l o r i d e s H a l i t e N o n - D i a g n o s i t i c ? ? n o N A p a t i t e A p a t i t e Mo d e r a t e N o n - D i a g n o s i t i c G o o d H y d r o c a r b o n s B i t u m e n ? Mo d e r a t e ? H e m a t i t e H e m a t i t e G o o d N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c O x i d e s S p i n e l C h r o m i t e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c S u l p h i d e s P y r i t e I n f e r r e d N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c 9
30/11/2016 Mapping of gas output on the fault lines • Integration of thermal hyperspectral for gas analysis – Spectral resolution: 130 bands in 7600 to 11800nm – Thermal resolution: better 0.018K – Spatial resolution: 2m • Support of VNIR/SWIR Hyperspectral for indirect detection of gas related changes on the vegetation • CO, SOx and H2S are the main gases around geothermal sources • The mapping of this gases is used to find even non airborne visible fumaroles • The amount of gases and mixture provides an indication of type of the prospect 10
30/11/2016 11
30/11/2016 Further effects to look at • Fumaroles, hot springs and the surrounding – Differences in the Chemistry in geothermal and non ‐ geothermal water – not direct map able – Only detectable on temperature – Usage of sediments around the water bodies • Sulphur deposits in SWIR • Silicates / Quartz structures on the shores in LWIR Sulphur 12
30/11/2016 The next steps on the way to a geothermal power production 13
30/11/2016 Thanks for your attention and please feel free to ask any question holger@helipro.com.fj he@dimap ‐ spectral.com 14
Recommend
More recommend