kick start development of green energy sources
play

Kick start development of green energy sources Airborne Geothermal - PDF document

30/11/2016 Kick start development of green energy sources Airborne Geothermal Exploration Presented by Joey Li Ze Ying and Dr. Holger Eichstaedt Objectives Fast track the geothermal exploration affords Reduce the costs for geophysics


  1. 30/11/2016 Kick ‐ start development of green energy sources Airborne Geothermal Exploration Presented by Joey Li Ze Ying and Dr. Holger Eichstaedt Objectives • Fast track the geothermal exploration affords • Reduce the costs for geophysics exploration and deposit estimations • Have higher probability of success in drilling of explorations and preproduction wells • Have data also prepared for – Preliminary Planning and Approvals – Engineering planning and construction – Environmental Impact Assessment 1

  2. 30/11/2016 Theoretical background • Hydrothermal ‐ heat ‐ carrier fluid, liquid water or steam depends on the pressure and temperature. 1 to 10km deep – Lidar, Hyperspectral TIR LW • Geopressurizaded ‐ similar to hydrothermal but in deeper places, heat ‐ carrier fluid usually between 100 and 200ºC, 1000 bars and are very salty – Lidar, Broadband Thermal or Hyperspectral TIR LW • Hot stones ‐ waterproof stones with a temperature between 100 and 300ºC and next to the magmatic bags ‐ Hyperspectral TIR LW 2

  3. 30/11/2016 Technical solution • Identification of the basic terrain structures • Detection of the geological fault lines • Evaluate these fault lines in their properties as of • are they still thermal active • are there clay minerals around the fault line on the surface • are their carbon monoxide and sulphurous gases coming out of the fault lines Technical solution • Multisensory airborne approach combining required sensors in one flight: – Topographic high power airborne Lidar systems with full waveform data collection to penetrate also rainforest structures – Reflective Hyperspectral sensor in the visible to short wave infrared band (400 to 2500nm) – Thermal Hyperspectral sensor (7600 to 11800nm) 3

  4. 30/11/2016 Positioning of the technical solution of airborne operations • Satellite data for area detection, but not capable of identifying details for planning – very suitable to identify the area of interest for the airborne operations • Airborne operation (typically 50 to 500 sqkm) • Geophysics and ground exploration work on the identified thermal potential areas after the airborne survey • Drill operations for exploration and semiproduction 4

  5. 30/11/2016 Detection of Fault lines • Topographic mapping of the terrain using a high power Lidar system – Lidar in IR in 1064nm, class 3 eyesafe – Flying height: 1500m – Swath width (overlap 70%): 1000m – Point densities: 8 per sqm for topography • Productivity: approx. 30 to 50 sqkm/flight hour 5

  6. 30/11/2016 Verification of thermal properties of the fault line • Usage of the thermal hyperspectral sensor – Spectral resolution: brightness temperature function with correction of the emissivity – Spatial resolution 2m, thermal 0.1K corrected • Data fusion with Lidar for “destriping” of vegetation 6

  7. 30/11/2016 Mapping of clay minerals • Usage of Hyperspectral VNIR and SWIR into the solution for mapping of land vegetation, soils, detailed land use, forestry and agricultural parameters, geotechnical facts, pollution on land – Flying height: still 600m – Same flight as dual Lidar solution – Spectral resolution: 416 bands in 400 to 2500nm – Spatial resolution: 1m 7

  8. 30/11/2016 General concept: Reflectance Material absorbs and reflect specific wavelength of light • Identify materials by their spectral signature • More reflectance More reflectance More reflectance Less reflectance Less reflectance Less reflectance 8

  9. 30/11/2016 T y p e S i l i c a t e S t r u c t u r e Mi n e r a l G r o u p E x a m p l e V I S N I R R e s p o n s e S WI R R e s p o n s e T I R R e s p o n s e A m p h i b o l e A c t i n o l i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e I n o s i l i c a t e s P y r o x e n e D i o p s i d e G o o d Mo d e r a t e G o o d C y c l o s i l i c a t e s T o u r m a l i n e E l b a i t e N o n - D i a g n o s i t i c G o o d G o o d G a r n e t G r o s s u l a r Mo d e r a t e N o n - D i a g n o s i t i c Mo d e r a t e N e s o s i l i c a t e s O l i v i n e F o r s t e r i t e G o o d N o n - D i a g n o s i t i c Mo d e r a t e s S o r o s i l i c a t e s E p i d o t e E p i d o t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e e t a c i Mi c a Mu s c o v i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e l i S C h l o r i t e C l i n o c h l o r e N o n - D i a g n o s i t i c G o o d Mo d e r a t e P h y l l o s i l i c a t e s I l l i t e N o n - D i a g n o s i t i c G o o d G o o d C l a y Mi n e r a l s K a o l i n i t e N o n - D i a g n o s i t i c G o o d G o o d O r t h o c l a s e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c G o o d F e l d s p a r T e c t o s i l i c a t e s A l b i t e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c G o o d S i l i c a Q u a r t z N o n - D i a g n o s i t i c I n f e r r e d G o o d C a l c i t e C a l c i t e N o n - D i a g n o s i t i c Mo d e r a t e G o o d C a r b o n a t e s D o l o m i t e D o l o m i t e N o n - D i a g n o s i t i c Mo d e r a t e G o o d H y d r o x i d e s G i b b s i t e N o n - D i a g n o s i t i c G o o d Mo d e r a t e A l u n i t e A l u n i t e Mo d e r a t e G o o d Mo d e r a t e S u l p h a t e s s e G y p s u m N o n - D i a g n o s i t i c G o o d G o o d t a c i B o r a t e s B o r a x N o n - D i a g n o s i t i c Mo d e r a t e ? l i S - C h l o r i d e s H a l i t e N o n - D i a g n o s i t i c ? ? n o N A p a t i t e A p a t i t e Mo d e r a t e N o n - D i a g n o s i t i c G o o d H y d r o c a r b o n s B i t u m e n ? Mo d e r a t e ? H e m a t i t e H e m a t i t e G o o d N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c O x i d e s S p i n e l C h r o m i t e N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c S u l p h i d e s P y r i t e I n f e r r e d N o n - D i a g n o s i t i c N o n - D i a g n o s i t i c 9

  10. 30/11/2016 Mapping of gas output on the fault lines • Integration of thermal hyperspectral for gas analysis – Spectral resolution: 130 bands in 7600 to 11800nm – Thermal resolution: better 0.018K – Spatial resolution: 2m • Support of VNIR/SWIR Hyperspectral for indirect detection of gas related changes on the vegetation • CO, SOx and H2S are the main gases around geothermal sources • The mapping of this gases is used to find even non airborne visible fumaroles • The amount of gases and mixture provides an indication of type of the prospect 10

  11. 30/11/2016 11

  12. 30/11/2016 Further effects to look at • Fumaroles, hot springs and the surrounding – Differences in the Chemistry in geothermal and non ‐ geothermal water – not direct map able – Only detectable on temperature – Usage of sediments around the water bodies • Sulphur deposits in SWIR • Silicates / Quartz structures on the shores in LWIR Sulphur 12

  13. 30/11/2016 The next steps on the way to a geothermal power production 13

  14. 30/11/2016 Thanks for your attention and please feel free to ask any question holger@helipro.com.fj he@dimap ‐ spectral.com 14

Recommend


More recommend