kernelization using structural parameters on sparse graph
play

Kernelization Using Structural Parameters on Sparse Graph Classes - PowerPoint PPT Presentation

Brief history Sparse graphs Natural parameters Structural parameters Conclusion Kernelization Using Structural Parameters on Sparse Graph Classes Jakub Gajarsk 1 Petr Hlinn 1 Jan Obdrlek 1 Sebastian Ordyniak 1 Felix Reidl 2 Peter


  1. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Kernelization Using Structural Parameters on Sparse Graph Classes Jakub Gajarský 1 Petr Hliněný 1 Jan Obdržálek 1 Sebastian Ordyniak 1 Felix Reidl 2 Peter Rossmanith 2 Fernando Sánchez Villaamil 2 Somnath Sikdar 2 1 Faculty of Informatics 2 Theoretical Computer Science Masaryk University RWTH Aachen University Brno, Czech Republic Aachen, Germany Workshop on Kernelization University of Warsaw 10th April 2013

  2. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Contents The story so far 1 Sparse graph classes 2 The problem with natural parameters 3 Structural parameterization to the rescue 4 Conclusion 5

  3. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Brief history

  4. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Kernelization A parameterized problem is fixed-parameter tractable iff it has a kernelization algorithm. Goal: obtain polynomial or linear kernels (whenever possible).

  5. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Kernelization A parameterized problem is fixed-parameter tractable iff it has a kernelization algorithm. Goal: obtain polynomial or linear kernels (whenever possible). Basic technique Devise reduction rules that preserve equivalence of instances; apply them exhaustively; prove kernel size.

  6. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Kernelization A parameterized problem is fixed-parameter tractable iff it has a kernelization algorithm. Goal: obtain polynomial or linear kernels (whenever possible). Basic technique Devise reduction rules that preserve equivalence of instances; apply them exhaustively; prove kernel size. Algorithmic meta-theorems: algorithms for problem classes

  7. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Previous work Framework for planar graphs. Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs Meta result for graphs . . .

  8. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Previous work Framework for planar graphs. Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs Meta result for graphs . . . . . . of bounded genus. Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta) Kernelization . . . excluding a fixed graph as a minor. Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels . . . excluding a fixed graph as a topological minor. Kim, Langer, Paul, Reidl, Rossmanith, Sau and S.: Linear kernels and single-exponential algorithms via protrusion decompositions

  9. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Previous work Framework for planar graphs. Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs Meta result for graphs . . . . . . of bounded genus. Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta) Kernelization . . . excluding a fixed graph as a minor. Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels . . . excluding a fixed graph as a topological minor. Kim, Langer, Paul, Reidl, Rossmanith, Sau and S.: Linear kernels and single-exponential algorithms via protrusion decompositions . . . of bounded expansion, locally bounded expansion and nowhere-dense graphs using structural parameterization.

  10. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Sparse graphs

  11. Brief history Sparse graphs Natural parameters Structural parameters Conclusion The big picture Natural parameter Structural parameter Bounded treedepth Forest Outerplanar Bounded treewidth Bounded degree Planar Bounded genus Excluding a minor Locally bounded treewidth Excluding a topological minor Bounded expansion Locally excluding a minor Locally bounded expansion Nowhere dense

  12. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Minors and topological minors

  13. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Shallow minors and shallow topological minors

  14. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Bounded expansion G ▽ r denotes the set of the r -shallow minors of G .

  15. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Bounded expansion G ▽ r denotes the set of the r -shallow minors of G . Definition (Grad, Expansion) The greatest reduced average density of a graph G is defined as | E ( H ) | ∇ r ( G ) = max | V ( H ) | . H ∈ G ▽ r

  16. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Bounded expansion G ▽ r denotes the set of the r -shallow minors of G . Definition (Grad, Expansion) The greatest reduced average density of a graph G is defined as | E ( H ) | ∇ r ( G ) = max | V ( H ) | . H ∈ G ▽ r The expansion of a graph class G is defined as ∇ r ( G ) = sup ∇ r ( G ) . G ∈G

  17. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Bounded expansion G ▽ r denotes the set of the r -shallow minors of G . Definition (Grad, Expansion) The greatest reduced average density of a graph G is defined as | E ( H ) | ∇ r ( G ) = max | V ( H ) | . H ∈ G ▽ r The expansion of a graph class G is defined as ∇ r ( G ) = sup ∇ r ( G ) . G ∈G A graph class G has bounded expansion if for some function f and all r ∈ N ∇ r ( G ) ≤ f ( r ) .

  18. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion).

  19. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges.

  20. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges. No large cliques. No large cliques.

  21. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges. No large cliques. No large cliques. No large clique-minors. Can contain large clique minors.

  22. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges. No large cliques. No large cliques. No large clique-minors. Can contain large clique minors. Closed under taking minors. “Closed” under taking shallow minors.

  23. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges. No large cliques. No large cliques. No large clique-minors. Can contain large clique minors. Closed under taking minors. “Closed” under taking shallow minors. Degeneracy of every minor is d . Degeneracy of r -shallow minors at most 2 · f ( r ) .

  24. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Excluded minors vs Bounded Expansion Excluded minors Bounded Expansion d -degenerate (depends on ex- f (0) -degenerate (depends on cluded minor). expansion). Linear number of edges. Linear number of edges. No large cliques. No large cliques. No large clique-minors. Can contain large clique minors. Closed under taking minors. “Closed” under taking shallow minors. Degeneracy of every minor is d . Degeneracy of r -shallow minors at most 2 · f ( r ) . Techniques from H-topo-minor-free graphs don’t work! (They use large (non-shallow) topological minors.)

  25. Brief history Sparse graphs Natural parameters Structural parameters Conclusion Natural parameters

  26. Brief history Sparse graphs Natural parameters Structural parameters Conclusion The problem Treewidth- t Deletion Input: A graph G , an integer k . Problem: Is there a set X ⊆ V ( G ) of size at most k such that tw ( G − X ) ≤ t ?

  27. Brief history Sparse graphs Natural parameters Structural parameters Conclusion The problem Treewidth- t Deletion Input: A graph G , an integer k . Problem: Is there a set X ⊆ V ( G ) of size at most k such that tw ( G − X ) ≤ t ? Treewidth- 1 Deletion = Feedback Vertex Set.

Recommend


More recommend