Example: Splitting Noise into Past and Future 5.
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j )
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 :
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) ,
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 :
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n )
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2)
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2)
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2) Second term is unknown;
Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2) Second term is unknown; Last term is known. 5 Digital Control Kannan M. Moudgalya, Autumn 2007
Splitting Noise into Past and Future 6.
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n )
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j )
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j )
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C = B Au ( n + j − k ) − F j B AC u ( n − k ) + F j C y ( n ) + E j ξ ( n + j )
Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C = B Au ( n + j − k ) − F j B AC u ( n − k ) + F j C y ( n ) + E j ξ ( n + j ) = B 1 − F j u ( n + j − k ) + F j � � C z − j C y ( n ) + E j ξ ( n + j ) A 6 Digital Control Kannan M. Moudgalya, Autumn 2007
Splitting Noise into Past and Future 7.
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j )
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms.
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model:
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n )
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) ˆ means estimate.
Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) ˆ means estimate. | n means “using measurements, available up to and including n ”. 7 Digital Control Kannan M. Moudgalya, Autumn 2007
Example: Splitting C/A into E j and F j 8.
Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A
Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A
Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A 1 + 1 . 1 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 | 1 +0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 +1 . 1 z − 1 +0 . 16 z − 2 +1 . 1 z − 1 − 0 . 66 z − 2 − 0 . 176 z − 3 +0 . 82 z − 2 +0 . 176 z − 3
Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A 1 + 1 . 1 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 | 1 +0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 +1 . 1 z − 1 +0 . 16 z − 2 +1 . 1 z − 1 − 0 . 66 z − 2 − 0 . 176 z − 3 +0 . 82 z − 2 +0 . 176 z − 3 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 8 Digital Control Kannan M. Moudgalya, Autumn 2007
Another Method to Split C/A into E j and F j 9.
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A :
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known • E j , F j are to be calculated.
Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known • E j , F j are to be calculated. • Think: How would you solve it? 9 Digital Control Kannan M. Moudgalya, Autumn 2007
Different Noise and Prediction Models: AR- 10. MAX
Different Noise and Prediction Models: AR- 10. MAX ARMAX Model
Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n )
Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n ) C = E j A + z − j F j
Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n ) C = E j A + z − j F j y ( n + j | t ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) 10 Digital Control Kannan M. Moudgalya, Autumn 2007
Different Noise and Prediction Models: ARI- 11. MAX
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 :
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n )
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n )
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n )
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful?
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆ C = E j A ∆ + z − j F j
Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆ C = E j A ∆ + z − j F j y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C 11 Digital Control Kannan M. Moudgalya, Autumn 2007
Different Noise and Prediction Models: ARIX 12.
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model,
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX:
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n )
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n ) 1 = E j A ∆ + z − j F j
Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n ) 1 = E j A ∆ + z − j F j y ( n + j | t ) = E j B ∆ u ( n + j − k ) + F j y ( n ) ˆ 12 Digital Control Kannan M. Moudgalya, Autumn 2007
Minimum Variance Control: Regulation 13.
Minimum Variance Control: Regulation 13. ARMAX Model: Ay ( n ) = Bu ( n − k ) + Cξ ( n )
Recommend
More recommend