joint probabilistic inference of causal structure
play

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE Dhanya Sridhar - PowerPoint PPT Presentation

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE Dhanya Sridhar Lise Getoor U.C. Santa Cruz KDD Workshop on Causal Discovery August 14 th , 2016 1 Outline Motivation Problem Formulation Our Approach Preliminary Results 2


  1. JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE Dhanya Sridhar Lise Getoor U.C. Santa Cruz KDD Workshop on Causal Discovery August 14 th , 2016 1

  2. Outline • Motivation • Problem Formulation • Our Approach • Preliminary Results 2

  3. Traditional to Hybrid Approaches X 1 X 2 X 1 X 2 Score ( G , D ) X X X 1 X 2 Score ( G , D ) X X 3 X 4 X 3 … Constraint Based Search and Score Based 3

  4. Traditional to Hybrid Approaches X 1 X 2 X 1 X 2 Score ( G , D ) X X X 1 X 2 Score ( G , D ) X X 3 X 4 X 4 … Constraint Based Search and Score Based Hybrid Approaches 4

  5. Traditional to Hybrid Approaches X 1 X 2 X 1 X 2 X X X X 3 X 4 X 3 X 4 Constraint Based Score ( G , D ) Hybrid Approaches: • PC-based DAG Search – Dash and Drudzel, UAI 99 • Min-max Hill Climbing – Tsamardinos et al., JMLR 06 5

  6. Joint Inference for Structure Discovery C 12 Joint Inference of Variables: X 1 X 2 Causal Edge C ij A Adjacency Edges A ij C 24 13 A 34 X 3 X 4

  7. Joint Inference for Structure Discovery C 12 Joint Inference of Variables: X 1 X 2 Causal Edge C ij A Adjacency Edges A ij C 24 13 A 34 X 3 X 4 Joint Inference Approaches: • Linear Programming Relaxations, Jaakkola et al., AISTATS 10

  8. Joint Inference for Structure Discovery C 12 Joint Inference of Variables: X 1 X 2 Causal Edge C ij A Adjacency Edges A ij C 24 13 A 34 X 3 X 4 Joint Inference Approaches: • Linear Programming Relaxations, Jaakkola et al., AISTATS 10 • MAX-SAT, Hyttinen et al., UAI 13

  9. Outline • Motivation • Problem Formulation • Our Approach • Preliminary Results 9

  10. Probabilistic Joint Model of Causal Structure C 12 X 1 X 2 A C 24 13 A 34 X 3 X 4 Extending joint approaches: probabilistic model over causal structures

  11. Probabilistic Joint Model of Causal Structure C 12 X 1 X 2 A C 24 13 A 34 X 3 X 4 Independence Tests

  12. Probabilistic Joint Model of Causal Structure C 12 X 1 X 2 A C 24 13 A 34 X 3 X 4 Combining logical and structural constraints and probabilistic reasoning

  13. Outline • Motivation • Problem Formulation • Our Approach • Preliminary Results 13 13

  14. Probabilistic Soft Logic (PSL) • Logic-like syntax with probabilistic, soft constraints • Describes an undirected graphical model 5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à Causes(A, C) Weighted rules Bach et. al (2015). “Hinge-loss Markov Random Fields and Pr Bach et. al (2015). “Hinge-loss Markov Random Fields and Probabilistic Soft obabilistic Soft Logic.” Logic.” arXiv arXiv. . Open sour Open source softwar ce software: https://psl.umiacs.umd.edu 14 14

  15. Probabilistic Soft Logic (PSL) • Logic-like syntax with probabilistic, soft constraints • Describes an undirected graphical model 5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à Causes(A, C) Weighted rules Predicates are continuous random variables! Bach et. al (2015), Bach et. al (2015), arXiv arXiv Open sour Open source softwar ce software: https://psl.umiacs.umd.edu 15 15

  16. Probabilistic Soft Logic (PSL) • Logic-like syntax with probabilistic, soft constraints • Describes an undirected graphical model Relaxations of Logical Operators 5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à Causes(A, C) Weighted rules Predicates are continuous random variables! Bach et. al (2015), Bach et. al (2015), arXiv arXiv Open sour Open source softwar ce software: https://psl.umiacs.umd.edu 16 16

  17. Probabilistic Soft Logic (PSL) • Rules instantiated with values from real network 5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à Causes(A, C) C 12 X 1 X 2 A C 24 13 A 34 X 3 X 4 17 17

  18. Probabilistic Soft Logic (PSL) • Rules instantiated with variables from real network C 24 5.0: Causes(X 1 , X 2 ) ^ Causes(X 2 , X 4 ) ^ Linked(X 1 ,X 4 ) à Causes(X 1 , X 4 ) C 12 A C 14 14 18 18

  19. Soft Logic Relaxation 5.0: Causes(X 1 , X 2 ) ^ Causes(X 2 , X 4 ) ^ Linked(X 1 ,X 4 ) à Causes(X 1 , X 4 ) Convex relaxation of implication and distance to rule satisfaction Linear Function Bach et al. (2015), arXiv arXiv 19 19 Bach et al. NIPS 12, Bach et al. UAI 13

  20. Hinge-loss Markov Random Fields 2 3 m 1 h max { � j ( Y , X ) , 0 } ] { 1 , 2 } i X p ( Y | X ) = Z ( w, X ) exp w j 4 − 5 j =1 Conditional Conditional random field random field Bach et al. (2015), arXiv arXiv 20 20 Bach et al. NIPS 12, Bach et al. UAI 13

  21. Hinge-loss Markov random fields 2 3 m 1 h max { � j ( Y , X ) , 0 } ] { 1 , 2 } i X p ( Y | X ) = Z ( w, X ) exp w j 4 − 5 j =1 Conditional Conditional Featur Feature functions ar e functions are e random field random field hinge-loss functions hinge-loss functions Bach et al. (2015), arXiv arXiv 21 21 Bach et al. NIPS 12, Bach et al. UAI 13

  22. Hinge-loss Markov random fields 2 3 m 1 h max { � j ( Y , X ) , 0 } ] { 1 , 2 } i X p ( Y | X ) = Z ( w, X ) exp w j 4 − 5 j =1 Conditional Conditional random field random field Featur Feature function for e function for each each instantiated rule instantiated rule Bach et al. (2015), arXiv 22 22 Bach et al. NIPS 12, Bach et al. UAI 13

  23. Hinge-loss Markov random fields 2 3 m 1 h max { � j ( Y , X ) , 0 } ] { 1 , 2 } i X p ( Y | X ) = Z ( w, X ) exp w j 4 − 5 j =1 Conditional Conditional random field random field 5.0: Causes(X 1 , X 2 ) ^ Causes(X 2 , X 4 ) ^ Linked(X 1 ,X 4 ) à Causes(X 1 , X 4 ) Bach et al. (2015), arXiv arXiv 23 23 Bach et al. NIPS 12, Bach et al. UAI 13

  24. Hinge-loss Markov random fields 2 3 m 1 h max { � j ( Y , X ) , 0 } ] { 1 , 2 } i X p ( Y | X ) = Z ( w, X ) exp w j 4 − 5 j =1 Conditional Conditional random field random field MAP Inference Intuition: minimize distances to satisfaction! Bach et al. (2015), arXiv arXiv 24 24 Bach et al. NIPS 12, Bach et al. UAI 13

  25. Fast Inference in Hinge-loss MRFs Convex, continuous inference objective… Convex optimization! • Solved using efficient, message-passing algorithm called Alternating Direction Method of Multipliers • Algorithms for weight learning and reasoning with latent variables Bach et al. (2015), arXiv arXiv Open sour Open source softwar ce software: https://psl.umiacs.umd.edu 25 25 Bach et al. NIPS 12, Bach et al. UAI 13

  26. Encoding PC Algorithm with PSL PC Algorithm: • No latent variables and confounders • Constraint-based approach • PC with PSL: • Use all independence tests • All rule weights set to 1.0 • 26 26

  27. PSL Causal Structure Discovery Multiple independence tests No early pruning! with various separation sets 27 27

  28. PSL Causal Structure Discovery Colliders in triples using d-separation 28 28

  29. PSL Causal Structure Discovery 29 29

  30. PSL Causal Structure Discovery 30 30

  31. PSL Causal Structure Discovery 31 31

  32. Outline • Motivation • Problem Formulation • Our Approach • Preliminary Results 32 32

  33. Evaluation Dataset Synthetic Causal DAG Dataset – 2000 examples Causality Challenge: http://www.causality.inf.ethz.ch/data/LUCAS.html 33 33

  34. Evaluation • Experimental setup: • G 2 Independence Tests for both PC and PSL • Max separation set of size 3 • Evaluation details • Run PC and PC-PSL algorithms and compare to causal ground truth • For PSL, round with threshold selected by cross- validation on causal edges 34 34

  35. Causal Edge Prediction Results Average causal edge prediction accuracy and F1 score on 3-fold cross validation Accuracy Accuracy F1 Scor F1 Score PC Algorithm 0.91 ± 0.06 0.53 ± 0.26 PC-PSL 0.94 ± 0.02 0.58 ± 0.19 35 35

  36. Summary and Future Directions • Joint inference of causal structure using probabilistic, soft constraints • Incorporate prior and domain knowledge for causal edges from text-mining, ontological constraints, and variable selection methods • Extensive, cross-validation experiments on multiple datasets 36 36

Recommend


More recommend