Theoretical Physics Colloquium (online) 2020.7.22 Jet tomography of hot and cold nuclear matter Xin-Nian Wang Central China Normal University 1 Lawrence Berkeley National Laboratory
QCD: Theory for strong interaction n l 1 f å å µ µ µ n = yg ¶ - - y - a L ( i gA m ) F F µ µ n QCD a a a , 2 4 = f 1 a • SU(3) gauge symmetry (non-Abelian) • Asymptotic freedom at short distance α s ( Q 2 ) = 4 π / (11 − 2 n f / 3) • Confinement at long distance ln( Q 2 / Λ 2 QCD ) • Chiral symmetry and its spontaneous breaking h ¯ ψψ i 6 = 0 • Goldstone boson and chiral condensate • Scale and U A (1) anomaly h F µ ν F µ ν i 6 = 0 • ….
Phase structure of QCD Matter 3
EOS from lattice QCD 7 ⇡ 2 120 + 16 ⇡ 2 � T 4 ✏ SB = 6 n f 30 16 (HotQCD-Bielefeld-BNL-CCNU) non-int. limit PRD90(2014)094503 12 HRG T c 8 3p/T 4 � /T 4 3s/4T 3 4 T [MeV] 0 130 170 210 250 290 330 370 At T ~ 5T c , e still 80% of the Stefan-Boltzmann value: quasi-particle modes at high T 4
QGP in heavy-ion collisions High T, µ confinement De-confinement nucleus quark-gluon plasma (QGP) RHIC LHC 5
Properties of QGP in A+A Collisions Dynamic System : § EM emission: Medium response to EM interaction g production, J/ Y suppression § Hard probes: Medium response to strong interaction Jet quenching § Soft probes: Bulk properties of medium collective flow
Jets in high-energy collisions Uncorrelated jet model for hadron production: De Groot and Ruijgrok (1971) • Asymptotic freedom of QCD: Gross & Wilczek, Politzer (1973) • Partons in QCD: Ellis, Gaillard & Ross (1976), Georgi & Machacek (1977) • Jets in QCD: Sterman & Weinberg (1977) • --tools for studying QCD and new discoveries S Bethke J. Phys. G26 (2000) R27 7
Jets in heavy-ion collisions Multiple scattering Transverse momentum broadening Jet 1 q q Parton energy loss Jet suppression Jet 2 8
Hard and soft probes Pb-Pb pp reference soft probes hard probes 9
<latexit sha1_base64="p3bve68lC8anp8Z6xmd4aNUv48=">ACyXicdVFdb9MwFHXCx0b5WIFHXiwqJF5WJV1h2QPSBIC8cCQ6DapbivHuWmtOnFmO4US/MQ/5I03fgpO0vKl7UqWj8+9Pj73Oi4E1yYIfnj+tes3bu7s3urcvnP3l73/oNTLUvFYMSkOo8phoEz2FkuBFwXigWSzgLF6+qvNnK1Cay/yjWRcwyeg85yln1Dhq1v3ZITKDOSWpoqxKpoO3tkpaCifkfb3bF20SpgNbDUnB3U4EpAZ/rUjoHKikBtqcVtJVsDwkhiegcbNYTXjdkuzRJrfLN5vH7MW72/V1iCE/GSv1kov1Ur/aBHF5wvnbzrozLq9oH8UHT4fRLgBUXjQgmfRAQ7QRM9tImTWfc7SQrM9cQE1TrcRgUZlJRZTgTYDuk1FBQtnQtjx3MqTM2qRrnFj9xTIJTqdzKDW7Yv29UN6ncWuMqNmof/P1eRluXFp0mhS8bwoDeSsfSgtBTYS19+KE6AGbF2gDLFnVfMFtQN0LjPr4ew7RfDU4H/XDYP/ow7B2/3IxjFz1Cj9FTFKJDdIzeoBM0Qsx7Qmv9Fb+O/C/+x/aUt9b3PnIfon/G+/ACM64WY=</latexit> <latexit sha1_base64="X1fOqjaXVz+tbHVZ/LiJBXqPA0=">ACXHicdVFda9RAFJ3EqtutauCL74MLkJ96JKk1aZvRH0rYLbFnbSZTKZ7A6dL2ZuFpeQP+lbX/wrmt1EUNEDA2fOuZe590xupfAQRXdBeG/n/oOHg93h3qP9xwejJ08vakc41NmpHXOfVcCs2nIEDya+s4VbnkV/nt+41/teLOC6O/wNryTNGFqVgFpPvLEKL6gpHSU1cWnpi46oSHUWme+4s5JCJV2SZuaWNEQyUvAMyJ1b364SQ7jI7LiDK/mgrDCQH8pXze1ukmaoxgTJxZLwNlwOB+No8lZevo2SfGWpPFxR96kxzieRFuMUY+L+egbKQyrFNfAJPV+FkcWspo6EzyZkgqzy1lt3TBZy3VHGf1dtwGvyqVQpcGtceDXir/t5RU+X9WuVtpaKw9H97G/Ff3qyCMs1qoW0FXLPuobKSGAzeJI0L4TgDuW4JZU60s2K2pG1g0P7HJoRfm+L/k8tkEp9Mzj6fjM/f9XEM0Av0Eh2iGJ2ic/QRXaApYugO/QgGwW7wPdwJ98L9rjQM+p5n6A+Ez38CYPm2CA=</latexit> EM Radiation: Single scattering EM field carried by a fast charge particle before and after scattering Final rad. v Initial rad. EM Radiation by scattering: Interference between initial and final state radiation 2 � � ~ ~ ! d 2 I d ! d Ω = e 2 k × ~ k × ~ v i v f � � � � − ~ ~ 4 ⇡ 2 � � k · ~ v i − ! k · ~ v f − ! � � ln 2 E 2 (1 − ~ � d ! ≈ 2 ↵ v i · ~ v f ) ! dI − 1 Bethe Heitler m 2 ⇡
<latexit sha1_base64="kAIV24u6uiO4MkF2pKv9yfROu50=">ACeXicdVFNb9NAEF27fLTho6Ecy2EhKko5RLbjtOkBqYILcCoSaStlY2u9Hicrz+0u6IXP8Hfhs3/gXLqydIAGCkXb19N6b2dmZqBRcacf5Ztk7d+7eu7+713vw8NHj/f6Tg0tVJLBjBWikNcRVSB4DjPNtYDrUgLNIgFXUfq21a9uQCpe5J/0uoRFRpc5Tzij2lBh/wspMlhSkjK6jgYv2/aO21ebxgIvKb2h4p+XEwboiqspAIUz6mRECib8kNlVAqLkyxrTBMjwmLC407N8cfQm6omnTN1hLiBkNQ83Rj+hzypiGSL1f6NvB6vbA/cEZnE2/ietiAqe9O3RZMXP/Ex+7I6WKAtnER9r+SuGBVBrlmgio1d51SL2oqNWcCmh6pFJSUpXQJcwNzmoFa1F0zDT4yTIyTQpqTa9yxv2fUNFNqnUXGmVG9Un9rLfkvbV7pZLqoeV5WGnK2eSipBNYFbteAYy6BabE2gDLJTa+YragZuTbLaofw6f4/+DSG7n+6OyjPzh/sx3HLjpEL9AQuegUnaN36ALNEPfrWfWkfXS+mE/t4f2q43VtrY5T9EfY9/Ao7dwds=</latexit> <latexit sha1_base64="wSHtJ7en4aLAhFBNkStI3ESQBg=">ACLXicdVDLSsNAFJ34rPVdelmsAh10ZDUatOFIOpCXClYKzQxTKaTOmTyYGYilJAfcuOviOBCEbf+htOHaEUPXDhzr3MvcdLGBXSMF60qemZ2bn5wkJxcWl5ZbW0tn4l4pRj0sIxi/m1hwRhNCItSUj1wknKPQYaXvB8cBv3xEuaBxdyn5CnBD1IupTjKS3NLJmUtv7DCtBDsHts8RzhI3o1Uz7PAxt1Ywq939dueNPcLZUNvWk19msWHBL3B2RPWsXmroxRBmMce6WnuxujNOQRBIzJETHNBLpZIhLihnJi3YqSIJwgHqko2iEQiKcbHhtDreV0oV+zFVFEg7VnxMZCoXoh57qDJG8Fb+9gfiX10mlbzkZjZJUkgiPvJTBmUMB9HBLuUES9ZXBGFO1a4Q3yIVilQBF1UIX5fC/8lVTfrevOiXj48GsdRAJtgC1SACRrgEJyCc9ACGNyDR/ACXrUH7Vl7095HrVPaeGYDTED7+AQ1vaoV</latexit> <latexit sha1_base64="FB5sQdOQP1Fp3bmCygPLrN/3C6E=">AC+HicdVLbhMxFPUMrzJAm5YlG4sIKRVqlJmGdrpAqmADK4pE2kpxMnI8dxIr85LtiRTc+RI2LECILZ/Cjr/B82hVUHsly8fn3GP7XnuWx1yqweCPZd+5e+/+g42HzqPHTza3Ots7pzIrBIMRy+JMnM+ohJinMFJcxXCeC6DJLIaz2fJtpZ+tQEiepZ/UOodJQucpjzijylDBtrXpkCyBOSWRoEyHU+9qcOGwiH5UM3l60aEqVfqIcm5mUkMkcIXRBZJwHG96jVZAUML4niCUhcL1YBLy9pFmbqisV7zUGlAbd6NX/pljf6a+VqDyL4fKF2NambogWEJYap5r2GBXwvWub1FAEfLdsnfhi6jlO0OkO+kf+4YHn4xr47n4DXvn72O0P6uiNk6Czm8SZqxIFUsplKO3UGuJpoKxVkMpUMKCTlSzqHsYEpNaVNdH3HEr8wTIijTJiRKlyz1x2aJlKuk5nJTKhayP+1irxJGxcq8ieap3mhIGXNQVERY5Xh6hfgkAtgKl4bQJng5q6YLah5AmX+StWEy0rx7eDU67vD/tHYf4TduODfQMPUc95KJDdIzeoRM0QswqrC/WN+u7/dn+av+wfzaptV6nqJ/wv71Fx38Tk=</latexit> EM Radiation: multiple scattering Classical radiation of a j i point charge (Jackson, p671) 2 � � ~ ! ~ ! d 2 I d ! d Ω = e 2 k × ~ v i k × ~ v i +1 � � e i ( ! t i − ~ X r i ) k · ~ � � − 4 ⇡ 2 ~ ~ � � k · ~ v i − ! k · ~ v i +1 − ! � � i Lorentz Invariant form: 2 � � ω d 3 I e 2 � � X X J i ( k ) e ik · x i d 3 k = � ε λ ( k ) · � � 2(2 π ) 3 � � � λ i p i − 1 p i J µ i ( k ) = EM current of a charged through a scattering − k · p i − 1 k · p i
Recommend
More recommend