meson propagation in nuclear matter
play

Meson Propagation in Nuclear Matter Jochen Wambach ECT*, Trento, - PowerPoint PPT Presentation

Meson Propagation in Nuclear Matter Jochen Wambach ECT*, Trento, Italy Frontiers in Nuclear and Hadronic Physics Florence, February 20 to March 3, 2017 Outline I) Strong-Interaction Matter Thermodynamics Phase Transitions


  1. Meson Propagation in Nuclear Matter Jochen Wambach ECT*, Trento, Italy Frontiers in Nuclear and Hadronic Physics Florence, February 20 to March 3, 2017

  2. Outline I) Strong-Interaction Matter ◮ Thermodynamics ◮ Phase Transitions ◮ Quantum-Chromodynamics ◮ The QCD Phase Diagram ◮ The Functional Renormalization Group II) Hadrons in QCD Matter ◮ The Role of Photons ◮ Dileptons in Heavy-Ion Collisions ◮ Spectral Functions from the FRG 2 / 42

  3. States of Matter 3 / 42

  4. Phase Diagram of H 2 O 4 / 42

  5. Landau Functions 5 / 42

  6. Matter under Extreme Conditions neutron star interior early universe ( ∼ 10 ms) 6 / 42

  7. Running of the Strong Coupling Constant α s 7 / 42

  8. Mass-splitting of Parity Partners 8 / 42

  9. Symmetries of QCD and Breaking Pattern symmetry vacuum high T low T , high µ order parameter consequences (local) color diquark color super- unbroken unbroken broken condensate conductivity SU (3) Z (3) center confinement/ unbroken broken broken Polyakov loop symmetry deconfinement scale gluon scale (Λ QCD ) , anomaly invariance condensate running coupling chiral symmetry U L ( N f ) × U R ( N f ) = U V (1) × SU V ( N f ) × SU A ( N f ) × U A (1) baryon number U V (1) unbroken unbroken unbroken — conservation flavor unbroken unbroken unbroken — multiplets SU V ( N f ) Goldstone bosons, chiral quark broken unbroken broken no degenerate states SU A ( N f ) condensate with opposite parity topological violation of U A (1) anomaly susceptibility intrinsic parity 9 / 42

  10. Landau Functions 10 / 42

  11. ’Columbia’ Plot 11 / 42

  12. Phase Diagram of QCD Matter MeV _ Pa 3 fm LHC quarks and gluons 10 4 C F L 10 36 RHIC u p e r c o n d u c t i n g p h a s e s c o l o r - s D C 10 3 ? Q s pressure SPS 10 35 e s e a h c p i t - t F a F l O 10 2 2SC? chiral crystal? L 10 34 crossover C E P ? chemical freeze out d chiral phase transition 10 1 FAIR i u 10 33 l unphysical region f r e baryons p u s hadrons p 10 0 - n 10 32 liquid mesons MeV gas 10 -1 7 10 20 30 40 50 70 100 200 300 500 10 11 10 12 K temperature 12 / 42

  13. Phase Diagram of QCD Matter ����������� ��� ������������������ ���� �������� ������� � � � � � � � � � ���������� � � �������������� � ��������� � � � � � ��� � � ��� ��� ���������� ��� ��������������������� � ���� � ������������������� ������������������������� ��� � ������������������ ������������������ �������������������������� 13 / 42

  14. Flow 14 / 42

  15. Flow 15 / 42

  16. Momentum Flow of the Effective Potential (Loading movie...) 16 / 42

  17. Phase diagram of the Quark-Meson Model 20 ◮ chiral order parameter σ 0 T � MeV � decreases towards higher T and µ 15 250 10 ◮ a crossover is observed at 200 5 T ≈ 175 MeV and µ = 0 150 270 290 310 ◮ critical endpoint (CEP) at 100 µ ≈ 292 MeV and T ≈ 10 MeV 50 ◮ vacuum: σ 0 = 93 . 5 MeV, m π = 138 MeV, m σ = 509 MeV, 400 Μ � MeV � m q = 299 MeV 100 200 300 [R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89 , 034010 (2014)] 17 / 42

  18. Generation of Mass in QCD 18 / 42

  19. Temperature Evolution of the Chiral Condensate 19 / 42

  20. Mass-splitting of Parity Partners 20 / 42

  21. Heavy-ion Collisions and Photons 21 / 42

  22. e + e − - annihilation in the vaccum 22 / 42

  23. Vector-meson Selfenergies 23 / 42

  24. Spectral Function 24 / 42

  25. Photo-absorption as a Test 25 / 42

  26. In-medium ρ -meson under HIC conditions 26 / 42

  27. Spectral Function weighted by 1 /M 27 / 42

  28. Dilepton Rates 28 / 42

  29. Dilepton Rates and the Phase Diagram 29 / 42

  30. Dilepton Data CERES 30 / 42

  31. Dilepton Data STAR 31 / 42

  32. Dilepton Data SPS NA60 32 / 42

  33. Dilepton Data SPS NA60 33 / 42

  34. Flow Equations for Mesonic Two-point Functions 34 / 42

  35. Flow of the Sigma and Pion Spectral Functions in vaccum at � q = 0 (Loading movie...) 35 / 42

  36. Sigma and Pion Spectral Function with increasing T at µ = 0 and � q = 0 (Loading movie...) 36 / 42

  37. Sigma Spectral Function with increasing T at µ = 0 (Loading movie...) 37 / 42

  38. Pion Spectral Function with increasing T at µ = 0 (Loading movie...) 38 / 42

  39. Flow Equations for Vector-Meson Two-point Functions 39 / 42

  40. ρ and a 1 Spectral Function with increasing T at µ = 0 and � q = 0 (Loading movie...) 40 / 42

  41. ρ and a 1 Mass Flow 41 / 42

  42. ρ and a 1 Pole Masses 42 / 42

Recommend


More recommend