DATA-DRIVEN MODEL DISCOVERY AND COORDINATE EMBEDDINGS FOR PHYSICAL SYSTEMS ICERM 2019 J. Nathan Kutz Department of Applied Mathematics University of Washington Email: kutz@uw.edu Web: faculty.washington.edu/kutz
Model Discovery Steven Brunton Mechanical Engineering University of Washington Joshua Proctor Institute for Disease Modeling
Mathematical Framework State-space Dynamics Parameters x Stochastic effects Dynamics Measurement Measurement noise Measurement model
What Could the Right Side Be? Limited by your imagination 2 nd degree polynomials
Sparse Identification of Nonlinear Dynamics (SINDy)
Identifying ROMs
Discovery Innovations Schaeffer et al -- corrupt data, PDEs, integral formulation, convergence Dongbin Xiu & co-workers (2018) – Sampling strategies Guang Lin & co-workers (2018) -- Uncertainty Metrics Hod Lipson and co-workers (2006) — Symbolic/genetic regression Karniadakis, Raissai, Perdikaris …. — Neural Nets Zheng, Askham, Brunton, Kutz & Aravkin (2018) – SR3 sparse relaxed regularized regression (for SINDy, LASSO, CS, TV, Matrix Completion …)
Manifolds and Embeddings Observables & Coordinates
Bernard Koopman 1931 Mezic (2004) Coifman, Kevrekidis, co-workers
Koopman Invariant Subspaces Brunton, Proctor & Kutz, PLOS ONE (2018)
Burgers’ Equation Cole-Hopf Kutz, Proctor & Brunton, Complexity (2018)
Dynamic Mode Decomposition Travis Askham Askham & Kutz, SIADS (2018)
Approximate Dynamical Systems Linear dynamics (equation-free) Eigenfunction expansion Least-square fit
DMD with Control Input Input Snapshots DMD generalization Proctor, Brunton & Kutz, SIADS (2016)
Koopman vs DMD: All about Observables!
Neural Nets
The Zoo NN Zoo
NNs for Koopman Embedding Bethany Lusch Lusch et al. Nat. Comm (2018)
Handling the Continuous Spectra NNs for Koopman Embedding Bethany Lusch Lusch, Kutz & Brunton, arxiv (2017) Lusch et al. Nat. Comm (2018)
The Pendulum
Flow Around a Cylinder
Autoencoder + SINDy Kathleen Champion
Fast Learning Charles Delahunt
Moth Olfactory System
Learning New Odors
Sparsity for Learning
Rapid Learning in NNs
Comparisons
Decoder Networks
Structure of Mapping Linear Maps: SVD (left singular vector) defines layer Erichson, Mathelin, Brunton, Mahoney & Kutz (2019)
Mathematical Framework State space Measurements Mapping Approximate the full state space from limited measurements Optimization
Linear Maps Singular value decomposition Data Linear measurements H Optimize (least-squares)
Optimal Placement Point measurements Optimal Sensors via QR pivots Manohar, Kutz & Brunton (2018) IEEE Control Systems Magazine Clark, Askham, Brunton & Kutz (2019) IEEE Sensors
Nonlinear Mapping General Form: Compositional Layers Universal Approximators: Hornik 1990
Shallow Layer Mapping Two Layers Composition Erichson, Mathelin, Brunton, Mahoney & Kutz (2019) SIAM
Activation Functions
Linear vs Nonlinear Maps Improved Interpretability of Modes
Improved Performance
Robustness to Noise
Improved Performance
Super Resolution Analysis
Conclusion Model Discovery: Sparse regression provides parsimonious dynamical models Coordinates: Learning Koopman embeddings can provide optimal basis for dynamics Neural Networks: Structure and function matter - Connect discovery and coordinates - Structure can lead to fast (one-shot) learning with limited data - Discovery of improved coordinate embeddings through decoding COMING SOON: A multi scale physics challenge set
Recommend
More recommend