ionic liquid gating of inas nanowire based fets
play

Ionic liquid gating of InAs nanowire-based FETs Francesco Rossella - PowerPoint PPT Presentation

Ionic liquid gating of InAs nanowire-based FETs Francesco Rossella NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR Pisa, Italy NEST, Scuola Normale Superiore & Istituto Nanoscienze-CNR A public institute for higher education


  1. Ionic liquid gating of InAs nanowire-based FETs Francesco Rossella NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR Pisa, Italy

  2. NEST, Scuola Normale Superiore & Istituto Nanoscienze-CNR A public institute for higher education and research Palazzo Carovana, SNS http://www.laboratorionest.it/

  3. Nanowire-based devices  Materials: self-assembled NW heterostructures

  4. Nanowire-based devices  Materials: self-assembled NW heterostructures  Technology: field effect controlled NW-based devices

  5. Nanowire-based devices  Materials: self-assembled NW heterostructures  Technology: field effect controlled NW-based devices  Experiments: electrical & thermal transport, luminescence

  6. Nanowire-based devices  Materials: self-assembled NW heterostructures  Technology: field effect controlled NW-based devices  Experiments: electrical & thermal transport, luminescence  Targets: fucntional devices: (Q)ICTs, energy harvesting

  7. Nanowire-based devices  Materials: self-assembled NW heterostructures  Technology: field effect controlled NW-based devices  Experiments: electrical & thermal transport, luminescence  Targets: fucntional devices: (Q)ICTs, energy harvesting  Implementation: I. hemogeneous nanowires II. InAs/InP axial heterostructures III. InAs/InP/GaSb radial heterostructures IV. Hybrid metal/semiconductor axial heterostrictures

  8. Nanowire-based devices  Materials: self-assembled NW heterostructures  Technology: field effect controlled NW-based devices  Experiments: electrical & thermal transport, luminescence  Targets: fucntional devices: (Q)ICTs, energy harvesting  Implementation: I. homogeneous nanowires II. InAs/InP axial heterostructures III. InAs/InP/GaSb radial heterostructures IV. Hybrid metal/semiconductor axial heterostrictures

  9. Nanowire growth by CBE gaseous NW Lucia reactant nucleation Sorba  Chemical beam catalyst epitaxy  III-V Semiconductors  Self-assembled Au catalyst nanocrystals Chemical Beam Epitaxy (bottom-up approach)

  10. Nanowire growth by CBE Daniele Valentina Ercolani Zannier Au colloids Au film EBL-defined dots Isha Omer Verma Arif

  11. Nanowire growth by CBE Au thin film Daniele Valentina Ercolani Zannier Au colloids Au film EBL-defined dots Gomes et al ., SST 30 , 115012 (2015) Isha Omer Verma Arif

  12. Nanowire growth by CBE Au thin film Daniele Valentina Ercolani Zannier Au colloids Au film EBL-defined dots Gomes et al ., SST 30 , 115012 (2015) EBL-defined dots 30 NW Counts 20 10 0 0 10 20 30 40 50 60 70 80 Isha Omer Verma Arif

  13. Radial heterostructures: core-shell NWs Zhara InAs core Umesh Montmatz Gomes 200 nm 100 nm Mirko ~0.8eV GaSb shell Rocci GaSb e  Tunable Esaki effect h  Thermoelectrics in coupled 1D systems ~0.4eV InAs  1D-1D Coulomb drag S.Pezzini , … and F.Rossella, i n preparation M.Rocci, F.Rossella* et al., Nano Lett. 16 , 7950 (2016)

  14. Axial heterostructures GaAs/InAs Sharp interface between 2 semiconductors

  15. Axial heterostructures GaAs/InAs InAs/InP S. Roddaro Sharp interface InP barriers few nm thick between 2 semiconductors inside an InAs NW  Tunneling processes in 0D and 1D (NW-QDs)  Shottcky barriers  light emission, optoelectronics

  16. Axial heterostructures GaAs/InAs InAs/InP Hybrids S. Roddaro M. 100 nm Gemmi J. David V. Piazza Sharp interface InP barriers few nm thick Metal/semiconductor between 2 semiconductors inside an InAs NW junctions  Tunneling processes in 0D and 1D (NW-QDs)  Shottcky barriers  light emission, optoelectronics J. David, F. Rossella* et al, Nano Lett. 17 , 2336 (2017) F. Rossella* et al, Nano Lett . 16 , 5521 (2016) F. Rossella et al, Nat. Nanotech. 9 , 997 (2014); F. Rossella et al, J. Phys. D: Appl. Phys . 47 394015 (2014) L. Romeo et al., Nano Lett. 12, 4490 (2012); S. Roddaro et al., Nano Lett. 11 , 1695 (2011)

  17. Homostructures: graded n-type doping A. Tredicucci A. Arcangeli s-SNOM  n(x)  ε (x)  tailoring dielectric response  Semiconductor  gate-tunable nano-plasmonics A.Arcangeli, F. Rossella* et al, Nano Lett. 16 , 5688 (2016)

  18. Ionic liquid gating of InAs nanowire-based FETs V. Demontis, V. Zannier, D. Ercolani, L. Sorba, F. Beltram and F. Rossella S. Ono J. Lieb and B. Sacepe NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa (Italy) Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa (Japan) Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Neel, Grenoble (France)

  19. NW Thermoelectrics SUPPORTED NW devices: Seebeck & Power Factor  2 S  ZT T l  k k e

  20. NW Thermoelectrics SUPPORTED NW devices: Seebeck & Power Factor  2 S  ZT T l  k k e V 0 -V H V 0 +V H Differential bias 2 V H S.Roddaro, et al., Nano Research 2014

  21. NW Thermoelectrics SUPPORTED NW devices: Seebeck & Power Factor  2 S  ZT T l  k k e V 0 -V H V 0 +V H Differential bias 2 V H S.Roddaro, et al., Nano Lett. 2013 S.Roddaro, et al., Nano Research 2014

  22. NW Thermoelectrics SUPPORTED NW devices: Seebeck & Power Factor  2 S  ZT T D.Prete et al, in preparation 2018 l  k k E. Tickonov, et al. Sci. Rep. 2016 e E. Tickonov, et al. SST 2016 V 0 -V H V 0 +V H Differential bias 2 V H S.Roddaro, et al., Nano Lett. 2013 S.Roddaro, et al., Nano Research 2014

  23. NW Thermoelectrics SUSPENDED NW devices: thermal conductivity  2 S  ZT T l  k k e

  24. NW Thermoelectrics SUSPENDED NW devices: thermal conductivity  2 S  ZT T l  k k e Optical approach S. Yazi, et al., Nano Research 2015

  25. NW Thermoelectrics SUSPENDED NW devices: thermal conductivity  2 S  ZT T l  k k e Optical approach All-electrical method: Current injection at freq ω Voltage probing at freq 3 ω S. Yazi, et al., Nano Research 2015 M.Rocci et al, submitted 2018

  26. Suspended NW devices: strategies for gating? backgate, side gates poor modulation of σ at temperatures of interest F.Rossella et al, Semiconductor and Semimetals 2018 15% R modulation within +/- 20V (combining BG and SG)

  27. Ionic liquid gating

  28. Zoology of ionic liquids CATIONS ANIONS

  29. Zoology of ionic liquids Made for each other! CATIONS ANIONS

  30. BMI+ PF6- DFT InAs InAs Hexafluorophosphate (coarse grain) -q q + layered electrodes + porosity Molecular dynamics diffusion coefficients V. Tozzini L. Bellucci

  31. Many additional problems in simulations!  realistic structure of the porosity (→ sponge builder)  Size of the system  The model of electrode must be polarizable Tests to  validate the Test with mechanically induced diffusion: model anion has a larger diffusivity than the cation  optimize the simulation parameters Test with nanoporous charged polarizable electrodes

  32. Electric Double Layer Transistors & Thermoelectrics • Test-bed for confinement effects (DOS discretization)  ZT, S 2 σ enhancement • oxides (SrTiO3, ZnO, Cu2O) Thin films 2D materials SWCNTs NWs ??

  33. Ionic liquid gated InAs NW FET: realization

  34. Ionic liquid gated InAs NW FET: realization

  35. Ionic liquid gated InAs NW FET: realization

  36. Ionic liquid gated InAs NW FET: realization

  37. Ionic liquid gated InAs NW FET: realization J. Lieb , … and F.Rossella, submitted

  38. Hysteresis (getting rid of) Parameter space: • Temperature

  39. Hysteresis (getting rid of) Parameter space: • Temperature • d V LG /dt (liquid gate voltage Sweep rate)

  40. Hysteresis (getting rid of) Parameter space: • Temperature • d V LG /dt (liquid gate voltage Sweep rate) T = 240 K d V LG /dt < 10 mV/s

  41. Hysteresis (getting rid of) 2.4 2.3 W I DS (  A) 2.2 MIN I DS 2.1 MIN V LG 2.0 -2 -1 0 1 2 V LG (V)

  42. Hysteresis (getting rid of) T (K) 220 240 260 280 300 2.4 4mV/s 2 W (V) 1 2.3 0 W -0.5 I DS (  A) LG (V) 2.2 -1.0 MIN V -1.5 MIN I DS 2.2 2.1 DS (  A) 2.0 MIN V MIN LG 1.8 2.0 I 220 240 260 280 300 -2 -1 0 1 2 V LG (V) T (K)

  43. Hysteresis (getting rid of) sweep rate (mV/s) T (K) 220 240 260 280 300 0 40 80 120 2.4 4mV/s 2 2 W (V) W (V) 1 1 2.3 0 0 W -0.5 -0.5 I DS (  A) LG (V) LG (V) 2.2 -1.0 -1.0 MIN MIN V V -1.5 -1.5 MIN I DS 2.2 2.2 2.1 DS (  A) DS (  A) 2.0 2.0 MIN V MIN MIN LG 1.8 1.8 2.0 I I 220 240 260 280 300 0 40 80 120 -2 -1 0 1 2 sweep rate (mV/s) V LG (V) T (K)

  44. Ionic liquid gated InAs NW FET: operation < 100 pA Full pinch-off

  45. Ionic liquid gated InAs NW FET: operation < 100 pA Full pinch-off Linear & saturation regions

  46. Ionic Liquid Gate vs back gate LIQUID GATE

  47. Ionic Liquid Gate vs back gate LIQUID GATE BACK GATE (no liquid) n ≈ 5*10 17 cm -3 µ ≈ 200 cm 2 /Vs C BG ≈ 60 aF

  48. Ionic Liquid Gate vs back gate LIQUID GATE BACK GATE (no liquid) BOTH (same device) n ≈ 5*10 17 cm -3 µ ≈ 200 cm 2 /Vs C BG ≈ 60 aF C LIQUID GATE ≈ 30* C BG

  49. Gate induced transition

  50. Gate induced transition V LG << 0V semiconductor V LG >> 0 V Metal-like

Recommend


More recommend