invertible braided module categories and graded braided
play

Invertible braided module categories and graded braided extensions - PowerPoint PPT Presentation

Invertible braided module categories and graded braided extensions of fusion categories Dmitri Nikshych (joint work with Alexei Davydov) University of New Hampshire October 15, 2018 Dmitri Nikshych (University of New Hampshire) Braided


  1. Explanation of terms Let M be a right B -module category and N be a left B -module category. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  2. Explanation of terms Let M be a right B -module category and N be a left B -module category. The B -module tensor product M ⊠ B N consists of pairs ( V ∈ M ⊠ N , γ = { γ X } ), where the middle balancing γ X : V ⊗ ( X ⊠ 1) → (1 ⊠ X ) ⊗ V , X ∈ B is associative. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  3. Explanation of terms Let M be a right B -module category and N be a left B -module category. The B -module tensor product M ⊠ B N consists of pairs ( V ∈ M ⊠ N , γ = { γ X } ), where the middle balancing γ X : V ⊗ ( X ⊠ 1) → (1 ⊠ X ) ⊗ V , X ∈ B is associative. This is similar to tensor product of modules over a ring. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  4. Explanation of terms Let M be a right B -module category and N be a left B -module category. The B -module tensor product M ⊠ B N consists of pairs ( V ∈ M ⊠ N , γ = { γ X } ), where the middle balancing γ X : V ⊗ ( X ⊠ 1) → (1 ⊠ X ) ⊗ V , X ∈ B is associative. This is similar to tensor product of modules over a ring. If M , N are bimodule categories then so is M ⊠ B N . B - Bimod is a monoidal 2 -category via ⊠ B Objects = B -bimodule categories, 1-cells = B -bimodule functors, 2-cells = B -bimodule natural transformations. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  5. Explanation of terms Let M be a right B -module category and N be a left B -module category. The B -module tensor product M ⊠ B N consists of pairs ( V ∈ M ⊠ N , γ = { γ X } ), where the middle balancing γ X : V ⊗ ( X ⊠ 1) → (1 ⊠ X ) ⊗ V , X ∈ B is associative. This is similar to tensor product of modules over a ring. If M , N are bimodule categories then so is M ⊠ B N . B - Bimod is a monoidal 2 -category via ⊠ B Objects = B -bimodule categories, 1-cells = B -bimodule functors, 2-cells = B -bimodule natural transformations. We will suppress the assocativity 2-cells for ⊠ B . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  6. Explanation of terms Let M be a right B -module category and N be a left B -module category. The B -module tensor product M ⊠ B N consists of pairs ( V ∈ M ⊠ N , γ = { γ X } ), where the middle balancing γ X : V ⊗ ( X ⊠ 1) → (1 ⊠ X ) ⊗ V , X ∈ B is associative. This is similar to tensor product of modules over a ring. If M , N are bimodule categories then so is M ⊠ B N . B - Bimod is a monoidal 2 -category via ⊠ B Objects = B -bimodule categories, 1-cells = B -bimodule functors, 2-cells = B -bimodule natural transformations. We will suppress the assocativity 2-cells for ⊠ B . The Brauer-Picard categorical 2-group BrPic( B ) is the “pointed part” of B - Bimod Objects are invertible w.r.t ⊠ B , all cells are isomorphisms. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 6 / 28

  7. Outline Graded extensions of fusion categories 1 Braided module categories over braided fusion categories 2 Braided extensions 3 Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 7 / 28

  8. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  9. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  10. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  11. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  12. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  13. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of B¨ ockenhauer-Evans-Kawahigashi): Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  14. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  15. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  16. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Two monoidal 2-categories: B - Mod ± with products M ± ⊠ B N . Relation between ± products: Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  17. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Two monoidal 2-categories: B - Mod ± with products M ± ⊠ B N . Relation between ± products: There is natural equivalence N − ⊠ B M ∼ − → M + ⊠ B N Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  18. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Two monoidal 2-categories: B - Mod ± with products M ± ⊠ B N . Relation between ± products: There is natural equivalence N − ⊠ B M ∼ − → M + ⊠ B N given by the transposition of factors N ⊠ M → M ⊠ N , Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  19. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Two monoidal 2-categories: B - Mod ± with products M ± ⊠ B N . Relation between ± products: There is natural equivalence N − ⊠ B M ∼ − → M + ⊠ B N given by the transposition of factors N ⊠ M → M ⊠ N , so that B - Mod − ≃ B - Mod op + Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  20. Let B be a braided fusion category with braiding c X , Y : X ⊗ Y → Y ⊗ X . Let M be a B -module category, i.e., there is ⊗ : B × M → M B - Mod := the 2-category of B -module categories Two tensor products on B - Mod There are two tensor functors α M ± : B → End B ( M ) ( α -inductions of ockenhauer-Evans-Kawahigashi): α M ± ( X ) = X ⊗ ? with the B¨ B -module structure given by c X , Y (resp. c − 1 Y , X ) Since M is a B − End B ( M )-bimodule, one can turn M into a B -bimodule category in 2 different ways: M ± (using α M ± ). Two monoidal 2-categories: B - Mod ± with products M ± ⊠ B N . Relation between ± products: There is natural equivalence N − ⊠ B M ∼ − → M + ⊠ B N given by the transposition of factors N ⊠ M → M ⊠ N , so that B - Mod − ≃ B - Mod op + Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28

  21. � � � � � � � � � � � A braided B -module category [Brochier, Ben-Zvi - Brochier - Jordan] is a B -module category M equipped with a collection of isomorphisms σ M X , M : X ∗ M → X ∗ M ( module braiding ) natural in X ∈ B , M ∈ M with σ 1 , M = 1 M and such that the diagrams σ M σ M X , Y ∗ M X ⊗ Y , M X ∗ ( Y ∗ M ) X ∗ ( Y ∗ M ) ( X ⊗ Y ) ∗ M ( X ⊗ Y ) ∗ M c − 1 m X , Y , M m X , Y , M c X , Y Y , X � ( X ⊗ Y ) ∗ M ( X ⊗ Y ) ∗ M ( Y ⊗ X ) ∗ M ( Y ⊗ X ) ∗ M c − 1 m − 1 m − 1 c X , Y Y , X Y , X , M � Y , X , M ( Y ⊗ X ) ∗ M ( Y ⊗ X ) ∗ M Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) m − 1 m − 1 Y , X , M � Y , X , M σ M σ M σ M X , M Y , X ∗ M X , M � Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) commute for all X , Y ∈ B and M ∈ M . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 9 / 28

  22. � � � � � � � � � � � A braided B -module category [Brochier, Ben-Zvi - Brochier - Jordan] is a B -module category M equipped with a collection of isomorphisms σ M X , M : X ∗ M → X ∗ M ( module braiding ) natural in X ∈ B , M ∈ M with σ 1 , M = 1 M and such that the diagrams σ M σ M X , Y ∗ M X ⊗ Y , M X ∗ ( Y ∗ M ) X ∗ ( Y ∗ M ) ( X ⊗ Y ) ∗ M ( X ⊗ Y ) ∗ M c − 1 m X , Y , M m X , Y , M c X , Y Y , X � ( X ⊗ Y ) ∗ M ( X ⊗ Y ) ∗ M ( Y ⊗ X ) ∗ M ( Y ⊗ X ) ∗ M c − 1 m − 1 m − 1 c X , Y Y , X Y , X , M � Y , X , M ( Y ⊗ X ) ∗ M ( Y ⊗ X ) ∗ M Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) m − 1 m − 1 Y , X , M � Y , X , M σ M σ M σ M X , M Y , X ∗ M X , M � Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) Y ∗ ( X ∗ M ) commute for all X , Y ∈ B and M ∈ M . B -module braided functors are required to respect module braiding. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 9 / 28

  23. Interpretation of module braidings Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  24. Interpretation of module braidings Terminology justification Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  25. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  26. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ α M → α M − − . + Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  27. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  28. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Tensor product of braided module categories Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  29. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Tensor product of braided module categories ( M , σ M ) ⊠ B ( N , σ N ) := ( M + ⊠ B N , σ M ⊠ B σ N ). Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  30. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Tensor product of braided module categories ( M , σ M ) ⊠ B ( N , σ N ) := ( M + ⊠ B N , σ M ⊠ B σ N ). The unit object is the regular B with σ B X , Y = c Y , X ◦ c X , Y . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  31. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Tensor product of braided module categories ( M , σ M ) ⊠ B ( N , σ N ) := ( M + ⊠ B N , σ M ⊠ B σ N ). The unit object is the regular B with σ B X , Y = c Y , X ◦ c X , Y . Denote B - Mod br the resulting monoidal 2-category. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  32. Interpretation of module braidings Terminology justification A module braiding on M gives rise to the pure braid group representation on End M ( X 1 ⊗ · · · ⊗ X n ⊗ M ) for X 1 , . . . , X n ∈ B and M ∈ M . A module braiding on M is precisely an isomorphism of tensor functors ∼ ∼ α M → α M − − . It gives a B -bimodule equivalence M + − → M − . + Tensor product of braided module categories ( M , σ M ) ⊠ B ( N , σ N ) := ( M + ⊠ B N , σ M ⊠ B σ N ). The unit object is the regular B with σ B X , Y = c Y , X ◦ c X , Y . Denote B - Mod br the resulting monoidal 2-category. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 10 / 28

  33. Module braiding = central structure Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  34. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  35. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  36. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  37. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  38. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  39. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) and vice versa. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  40. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) and vice versa. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  41. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) and vice versa. Thus, Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  42. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) and vice versa. Thus, B− Mod br ≃ Z ( B− Mod ). Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  43. Module braiding = central structure Let N = ( N , σ N ) be a braided B -module category and M be any B -module category. Let us combine previously mentioned equivalences: transposition module braiding of N B M , N : M + ⊠ B N − − − − − − − → N − ⊠ B M − − − − − − − − − − − − − → N + ⊠ B M . Let us denote B− Mod + simply B− Mod and its tensor product ⊠ B . ∼ The above B M , N : M ⊠ B N − → N ⊠ B M equips M with a structure of an object in the Z ( B− Mod ) (= the 2-center of the monoidal 2-category B - Mod ) and vice versa. Thus, B− Mod br ≃ Z ( B− Mod ). In particular, B− Mod br is a braided monoidal 2 -category . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 11 / 28

  44. What is a braided monoidal 2-category? Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 12 / 28

  45. What is a braided monoidal 2-category? Defined by Kapranov-Voevodsky, Breen. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 12 / 28

  46. What is a braided monoidal 2-category? Defined by Kapranov-Voevodsky, Breen. Just like usual braided category, but equalities now become isomorphisms (natural 2-cells): (id M ⊠ B B L , N )( B L , M ⊠ B id N ) ∼ − → B L , M ⊠ B N , β L , M , N : ( B L , N ⊠ B id K )(id L ⊠ B B K , N ) ∼ : − → B L ⊠ B K , N γ L , K , N for all braided B -module categories L , K , M , N . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 12 / 28

  47. What is a braided monoidal 2-category? Defined by Kapranov-Voevodsky, Breen. Just like usual braided category, but equalities now become isomorphisms (natural 2-cells): (id M ⊠ B B L , N )( B L , M ⊠ B id N ) ∼ − → B L , M ⊠ B N , β L , M , N : ( B L , N ⊠ B id K )(id L ⊠ B B K , N ) ∼ : − → B L ⊠ B K , N γ L , K , N for all braided B -module categories L , K , M , N . These satisfy coherence of their own. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 12 / 28

  48. � � � � � � � � � � � � � � � � � � � � � � � � � � � � K ⊠ B L ⊠ B M ⊠ B N K ⊠ B L ⊠ B M ⊠ B N L ⊠ B K ⊠ B M ⊠ B N L ⊠ B K ⊠ B M ⊠ B N β = β β L ⊠ B M ⊠ B K ⊠ B N L ⊠ B M ⊠ B K ⊠ B N β L ⊠ B M ⊠ B N ⊠ B K L ⊠ B M ⊠ B N ⊠ B K , K ⊠ B L ⊠ B M ⊠ B N K ⊠ B L ⊠ B M ⊠ B N K ⊠ B L ⊠ B N ⊠ B M K ⊠ B L ⊠ B N ⊠ B M γ = γ γ K ⊠ B N ⊠ B L ⊠ B M K ⊠ B N ⊠ B L ⊠ B M γ N ⊠ B K ⊠ B L ⊠ B M N ⊠ B K ⊠ B L ⊠ B M , Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 13 / 28

  49. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 14 / 28

  50. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � K ⊠ B L ⊠ B M ⊠ B N K ⊠ B L ⊠ B M ⊠ B N γ � M ⊠ B K ⊠ B L ⊠ B N K ⊠ B M ⊠ B L ⊠ B N M ⊠ B K ⊠ B L ⊠ B N K ⊠ B M ⊠ B L ⊠ B N β β = γ γ can K ⊠ B M ⊠ B N ⊠ B L M ⊠ B N ⊠ B K ⊠ B L K ⊠ B M ⊠ B N ⊠ B L M ⊠ B N ⊠ B K ⊠ B L β M ⊠ B K ⊠ B N ⊠ B L M ⊠ B K ⊠ B N ⊠ B L , K ⊠ B L ⊠ B M K ⊠ B L ⊠ B M L ⊠ B K ⊠ B M K ⊠ B M ⊠ B L L ⊠ B K ⊠ B M K ⊠ B M ⊠ B L β γ = L ⊠ B M ⊠ B K M ⊠ B K ⊠ B L L ⊠ B M ⊠ B K M ⊠ B K ⊠ B L γ β M ⊠ B L ⊠ B K M ⊠ B L ⊠ B K . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 14 / 28

  51. The braided 2-categorical Picard group Pic br ( B ) Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  52. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  53. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  54. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . If we view Pic br ( B ) as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  55. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . If we view Pic br ( B ) as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are π 1 = 1, π 2 = Pic br ( B ), π 3 = Inv( Z sym ( B )), and π 4 = k × . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  56. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . If we view Pic br ( B ) as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are π 1 = 1, π 2 = Pic br ( B ), π 3 = Inv( Z sym ( B )), and π 4 = k × . There is an exact sequence for the underlying group Pic br ( B ) of Pic br ( B ): 0 → Inv( Z sym ( B )) − → Inv( B ) − → Aut ⊗ (id B ) − → Pic br ( B ) − → Pic( B ) − → Aut br ( B ) . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  57. The braided 2-categorical Picard group Pic br ( B ) For our purposes we will need the “pointed part” of B− Mod br consisting of braided module categories invertible w.r.t. ⊠ B and equivalences between them: Pic br ( B ) = Inv ( B− Mod br ) . If we view Pic br ( B ) as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are π 1 = 1, π 2 = Pic br ( B ), π 3 = Inv( Z sym ( B )), and π 4 = k × . There is an exact sequence for the underlying group Pic br ( B ) of Pic br ( B ): 0 → Inv( Z sym ( B )) − → Inv( B ) − → Aut ⊗ (id B ) − → Pic br ( B ) − → Pic( B ) − → Aut br ( B ) . Here Inv() denotes the group of invertible objects, Pic( B ) is the usual Picard group of B . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 15 / 28

  58. Whitehead products π k × π l → π k + l − 1 Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  59. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  60. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. So there is a canonical quadratic form Q B : Pic br ( B ) → Inv( Z sym ( B )) by [Joyal-Street]. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  61. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. So there is a canonical quadratic form Q B : Pic br ( B ) → Inv( Z sym ( B )) by [Joyal-Street]. This comes from π 2 × π 2 → π 3 . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  62. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. So there is a canonical quadratic form Q B : Pic br ( B ) → Inv( Z sym ( B )) by [Joyal-Street]. This comes from π 2 × π 2 → π 3 . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  63. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. So there is a canonical quadratic form Q B : Pic br ( B ) → Inv( Z sym ( B )) by [Joyal-Street]. This comes from π 2 × π 2 → π 3 . There is a well-defined bilinear map P B : Inv( Z sym ( B )) × Pic br ( B ) → k × given by P B ( Z , M ) = σ Z , X ∈ Aut( Z ⊗ X ) = k × , X ∈ M . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  64. Whitehead products π k × π l → π k + l − 1 Pic br ( B ) (the 1-categorical truncation of Pic br ( B )) is a braided categorical group. So there is a canonical quadratic form Q B : Pic br ( B ) → Inv( Z sym ( B )) by [Joyal-Street]. This comes from π 2 × π 2 → π 3 . There is a well-defined bilinear map P B : Inv( Z sym ( B )) × Pic br ( B ) → k × given by P B ( Z , M ) = σ Z , X ∈ Aut( Z ⊗ X ) = k × , X ∈ M . This is π 3 × π 2 → π 4 . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 16 / 28

  65. Outline Graded extensions of fusion categories 1 Braided module categories over braided fusion categories 2 Braided extensions 3 Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 17 / 28

  66. From extensions to braided monoidal 2-functors and back Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  67. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  68. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  69. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  70. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Furthermore, the tensor products ⊗ x , y : C x ⊠ B C y → C xy gives rise to ∼ B -module equivalences M x , y : C x × C y − → C xy . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  71. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Furthermore, the tensor products ⊗ x , y : C x ⊠ B C y → C xy gives rise to ∼ B -module equivalences M x , y : C x × C y − → C xy . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  72. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Furthermore, the tensor products ⊗ x , y : C x ⊠ B C y → C xy gives rise to ∼ B -module equivalences M x , y : C x × C y − → C xy . This gives a (usual) monoidal functor A → Pic br ( B ) : x �→ C x . Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 18 / 28

  73. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Furthermore, the tensor products ⊗ x , y : C x ⊠ B C y → C xy gives rise to ∼ B -module equivalences M x , y : C x × C y − → C xy . This gives a (usual) monoidal functor A → Pic br ( B ) : x �→ C x . Dmitri Nikshych (University of New Hampshire) It upgrades to a braided monoidal 2-functor: Braided extensions October 15, 2018 18 / 28

  74. From extensions to braided monoidal 2-functors and back Let A be a finite Abelian group. Let B be a braided fusion category with braiding c . Given a braided extension � C = C x , C 1 = B , x ∈ A we have C x ∈ Pic br ( B ) , x ∈ X with the module braiding given by σ X , V = c X , V c V , X , V ∈ B , X ∈ C x . Furthermore, the tensor products ⊗ x , y : C x ⊠ B C y → C xy gives rise to ∼ B -module equivalences M x , y : C x × C y − → C xy . This gives a (usual) monoidal functor A → Pic br ( B ) : x �→ C x . Dmitri Nikshych (University of New Hampshire) It upgrades to a braided monoidal 2-functor: Braided extensions October 15, 2018 18 / 28

  75. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 19 / 28

  76. Namely, the associativity and braiding constraints of C give rise to natural 2-cells involving M x , y , x , y ∈ A : Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 19 / 28

  77. � � � � � � � � Namely, the associativity and braiding constraints of C give rise to natural 2-cells involving M x , y , x , y ∈ A : M y , z C x ⊠ B C y ⊠ B C z C x ⊠ B C yz α x , y , z M x , y M x , yz � C xyz , C xy ⊠ B C z M xy , z and B x , y C x ⊠ B C y C y ⊠ B C x δ x , y M x , y M y , x C xy . Here B x , y is the braiding in Pic br ( B ). The moral: Structure morphisms in C ← → structure 2-cells in Pic br ( B ). Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 19 / 28

  78. Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 20 / 28

Recommend


More recommend