inverse trig functions
play

Inverse trig functions 11/21/2011 Remember: f 1 ( x ) is the - PowerPoint PPT Presentation

Inverse trig functions 11/21/2011 Remember: f 1 ( x ) is the inverse function of f ( x ) if f 1 ( y ) = x . y = f ( x ) implies For inverse functions to the trigonometric functions, there are two notations: f 1 ( x ) f ( x ) sin


  1. Inverse trig functions 11/21/2011

  2. Remember: f � 1 ( x ) is the inverse function of f ( x ) if f � 1 ( y ) = x . y = f ( x ) implies For inverse functions to the trigonometric functions, there are two notations: f � 1 ( x ) f ( x ) sin � 1 ( x ) = arcsin( x ) sin( x ) cos � 1 ( x ) = arccos( x ) cos( x ) tan � 1 ( x ) = arctan( x ) tan( x ) sec � 1 ( x ) = arcsec( x ) sec( x ) csc � 1 ( x ) = arccsc( x ) csc( x ) cot � 1 ( x ) = arccot( x ) cot( x )

  3. In general: arc ( - ) takes in a ratio and spits out an angle: ! # θ "

  4. In general: arc ( - ) takes in a ratio and spits out an angle: ! # θ " cos( θ ) = a / c so arccos( a / c ) = θ

  5. In general: arc ( - ) takes in a ratio and spits out an angle: ! # θ " cos( θ ) = a / c so arccos( a / c ) = θ sin( θ ) = b / c so arcsin( b / c ) = θ

  6. In general: arc ( - ) takes in a ratio and spits out an angle: ! # θ " cos( θ ) = a / c so arccos( a / c ) = θ sin( θ ) = b / c so arcsin( b / c ) = θ tan( θ ) = b / a so arctan( b / a ) = θ

  7. There are lots of points we know on these functions... Examples: 1. Since sin( π / 2) = 1, we have arcsin(1) = π / 2 2. Since cos( π / 2) = 0, we have arccos(0) = π / 2 3. arccos(1) = √ 4. arcsin( 2 / 2) = 5. arctan(1) =

  8. Domain/range y = sin( x )

  9. Domain/range y = sin( x )

  10. Domain/range y = sin( x ) y = arcsin( x ) Domain: − 1 ≤ x ≤ 1

  11. Domain/range y = arcsin( x ) ! /2 - - "! /2 Domain: − 1 ≤ x ≤ 1

  12. Domain/range y = arcsin( x ) ! /2 - - "! /2 Domain: − 1 ≤ x ≤ 1 Range: − π / 2 ≤ y ≤ π / 2

  13. Domain/range y = cos( x )

  14. Domain/range y = cos( x )

  15. Domain/range y = cos( x ) y = arccos( x ) Domain: − 1 ≤ x ≤ 1

  16. Domain/range y = arccos( x ) ! - 0 Domain: − 1 ≤ x ≤ 1

  17. Domain/range y = arccos( x ) ! - 0 Domain: − 1 ≤ x ≤ 1 Range: 0 ≤ y ≤ π

  18. Domain/range y = tan( x )

  19. Domain/range y = tan( x )

  20. Domain/range y = tan( x ) y = arctan( x ) Domain: −∞ ≤ x ≤ ∞

  21. Domain/range y = arctan( x ) ! /2 - - "! /2 Domain: −∞ ≤ x ≤ ∞

  22. Domain/range y = arctan( x ) ! /2 - - "! /2 Domain: −∞ ≤ x ≤ ∞ Range: − π / 2 < y < π / 2

  23. Domain/range y = sec( x )

  24. Domain/range y = sec( x )

  25. Domain/range y = sec( x ) y = arcsec( x ) Domain: x ≤ − 1 and 1 ≤ x

  26. Domain/range y = arcsec( x ) ! - 0 Domain: x ≤ − 1 and 1 ≤ x

  27. Domain/range y = arcsec( x ) ! - 0 Domain: x ≤ − 1 and 1 ≤ x Range: 0 ≤ y ≤ π

  28. Domain/range y = csc( x )

  29. Domain/range y = csc( x )

  30. Domain/range y = csc( x ) y = arccsc( x ) Domain: x ≤ − 1 and 1 ≤ x

  31. Domain/range y = arccsc( x ) ! /2 - - "! /2 Domain: x ≤ − 1 and 1 ≤ x

  32. Domain/range y = arccsc( x ) ! /2 - - "! /2 Domain: x ≤ − 1 and 1 ≤ x Range: − π / 2 ≤ y ≤ π / 2

  33. Domain/range y = cot( x )

  34. Domain/range y = cot( x )

  35. Domain/range y = cot( x ) y = arccot( x ) Domain: −∞ ≤ x ≤ ∞

  36. Domain/range y = arccot( x ) ! - 0 Domain: −∞ ≤ x ≤ ∞

  37. Domain/range y = arccot( x ) ! - 0 Domain: −∞ ≤ x ≤ ∞ Range: 0 < y < π

  38. Graphs arcsin( x ) arccos( x ) arctan( x ) ! - ! /2 ! /2 - - 0 - - "! /2 "! /2 arcsec( x ) arccsc( x ) arccot( x ) ! - ! - ! /2 - 0 0 - "! /2

  39. Derivatives Use implicit di ff erentiation (just like ln( x )).

  40. Derivatives Use implicit di ff erentiation (just like ln( x )). Q. Let y = arcsin( x ). What is dy dx ?

  41. Derivatives Use implicit di ff erentiation (just like ln( x )). Q. Let y = arcsin( x ). What is dy dx ? If y = arcsin( x ) then x = sin( y ).

  42. Derivatives Use implicit di ff erentiation (just like ln( x )). Q. Let y = arcsin( x ). What is dy dx ? If y = arcsin( x ) then x = sin( y ). d Take dx of both sides of x = sin( y ):

  43. Derivatives Use implicit di ff erentiation (just like ln( x )). Q. Let y = arcsin( x ). What is dy dx ? If y = arcsin( x ) then x = sin( y ). d Take dx of both sides of x = sin( y ): LHS: d RHS: d dx sin( y ) = cos( y ) dy dx = cos(arcsin( x )) dy dx x = 1 dx

  44. Derivatives Use implicit di ff erentiation (just like ln( x )). Q. Let y = arcsin( x ). What is dy dx ? If y = arcsin( x ) then x = sin( y ). d Take dx of both sides of x = sin( y ): LHS: d RHS: d dx sin( y ) = cos( y ) dy dx = cos(arcsin( x )) dy dx x = 1 dx So 1 dy dx = cos(arcsin( x )) .

  45. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . θ

  46. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x θ

  47. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x 1 ! θ !

  48. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x 1 ! θ √ 1"#"$ ² !

  49. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x 1 ! θ √ 1"#"$ ² ! p 1 − x 2 / 1 So cos( θ ) =

  50. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x 1 ! θ √ 1"#"$ ² ! p 1 − x 2 So cos( arcsin( x )) =

  51. Simplifying cos(arcsin( x )) Call arcsin( x ) = θ . sin( θ ) = x 1 ! θ √ 1"#"$ ² ! p 1 − x 2 So cos( arcsin( x )) = 1 1 d So dx arcsin( x ) = cos(arcsin( x )) = 1 − x 2 . √

  52. d Calculate dx arctan( x ). 1. Rewrite y = arctan( x ) as x = tan( y ). 2. Use implicit di ff erentiation and solve for dy dx . 3. Your answer will have sec(arctan( x )) in it. Simplify this expression using ! arctan(x) 1 !

  53. Recall: In general, if y = f � 1 ( x ), then x = f ( y ). So 1 = f 0 ( y ) dy f � 1 ( x ) dx = f 0 � � , and so d 1 dx f � 1 ( x ) = f 0 ( f ( x ))

  54. Recall: In general, if y = f � 1 ( x ), then x = f ( y ). So 1 = f 0 ( y ) dy f � 1 ( x ) dx = f 0 � � , and so d 1 dx f � 1 ( x ) = f 0 ( f ( x )) f 0 ( x ) f ( x ) cos( x ) − sin( x ) sec( x ) sec( x ) tan( x ) csc( x ) − csc( x ) cot( x ) − csc 2 ( x ) cot( x )

  55. Recall: In general, if y = f � 1 ( x ), then x = f ( y ). So 1 = f 0 ( y ) dy f � 1 ( x ) dx = f 0 � � , and so d 1 dx f � 1 ( x ) = f 0 ( f ( x )) f 0 ( x ) f ( x ) f 0 ( x ) f ( x ) 1 arctan( x ) − sin(arccos( x )) cos( x ) − sin( x ) 1 arcsec( x ) sec( x ) sec( x ) tan( x ) sec(arcsec( x )) tan(arcsec( x )) 1 arccsc( x ) − csc( x ) − csc( x ) cot( x ) csc(arccsc( x )) cot(arccsc( x )) 1 − csc 2 ( x ) arccot( x ) cot( x ) − � 2 � csc(arccot( x ))

  56. To simplify, use the triangles 1 ! arccos(x) arcsec(x) ! 1 ! ! ! 1 1 arccsc(x) arccot(x) ! ! !

  57. More examples 1 d Since dx arctan( x ) = 1+ x 2 , we know d 1. dx arctan(ln( x )) = 1 Z 2. 1 + x 2 dx = Z 1 3. (1 + x ) √ x dx =

Recommend


More recommend