introduction to theoretical methods to describe caloric
play

Introduction to theoretical methods to describe caloric effects in - PowerPoint PPT Presentation

Introduction to theoretical methods to describe caloric effects in ferroic materials Peter Entel, Sanjubala Sahoo, Mario Siewert, Markus E. Gruner, Heike C. Herper Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany 1.2 Ni


  1. Introduction to theoretical methods to describe caloric effects in ferroic materials Peter Entel, Sanjubala Sahoo, Mario Siewert, Markus E. Gruner, Heike C. Herper Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany 1.2 Ni 50 Mn 34 In 16 0.8 Experiment Model ∆ H = 1 T 0.4 ∆ T ad (K) 0.0 -0.4 -0.8 150 180 210 240 270 300 330 Temperature (K) JPD:AP 44 , 064012 (2011) IIMEC-2012 MCE – p.1/30

  2. Motivation: Functional properties of Heuslers Interplay of magnetism and structural transformation: – Exchange bias (EB) effect: Shift of magnetic hysteresis curve – Magnetocaloric effect (MCE): Conventional (heating) and inverse (cooling) effect – Magnetic shape memory effect (MSME): Huge strain effect in the martensitic phase in an external magnetic field Origin: Competing ferro- and antiferromagnetic interactions IIMEC-2012 MCE – p.2/30

  3. Introduction Solid state refrigeration can reduce the worldwide CO 2 emission Cooling requires to control the entropy of the refrigeration medium: (possible at phase transitions) Solid state refrigeration requires diffusionless transformation because diffusion is too slow IIMEC-2012 MCE – p.3/30

  4. Introduction Solid state refrigeration can reduce the worldwide CO 2 emission Cooling requires to control the entropy of the refrigeration medium: (possible at phase transitions) Solid state refrigeration requires diffusionless transformation because diffusion is too slow S. Fähler et al., Adv. Eng. Mater. 13 , 1 (2011) L. Mañosa et al., Nat, Mater. 9 , 478 (2010) IIMEC-2012 MCE – p.3/30

  5. Introduction Solid state refrigeration can reduce the worldwide CO 2 emission Cooling requires to control the entropy of the refrigeration medium: (possible at phase transitions) Solid state refrigeration requires diffusionless transformation because diffusion is too slow Barocaloric cooling cycle: Adiabatic compression of austenite in- duces martensite / twins and increases T Heat is releasesed to external reservoir Adiabatic decompression induces austen- ite and decreases T System is connected to cold reservoir be- coming colder S. Fähler et al., Adv. Eng. Mater. 13 , 1 (2011) L. Mañosa et al., Nat, Mater. 9 , 478 (2010) IIMEC-2012 MCE – p.3/30

  6. Electrocaloric effect cooling cycle Cycle involving two constant-entropy transitions and two at constant field E IIMEC-2012 MCE – p.4/30

  7. Electrocaloric effect cooling cycle Cycle involving two constant-entropy transitions and two at constant field E J. F . Scott., Annu. Rev. Res. 41 , 229 (2011) Z. Zhao et al., Nat, Mater. 5 , 8233 (2006) IIMEC-2012 MCE – p.4/30

  8. Electrocaloric effect cooling cycle Cycle involving two constant-entropy transitions and two at constant field E Electrocaloric cooling cycle: (a) Initial state T - E is rapidly applied bringing the crystal to lower entropy (b) At higher T - subsequently the crystal is allowed to cool at constant E lowering entropy to (c) (c) E is reduced to 0 and further cooling by adiabatic depolarization (d) System warms up to J. F . Scott., Annu. Rev. Res. 41 , 229 (2011) initial state absorbing Z. Zhao et al., Nat, Mater. 5 , 8233 (2006) heat from the local IIMEC-2012 MCE – p.4/30

  9. Electrocaloric entropy change Calculated entropy S(T) of BaTiO 3 : IIMEC-2012 MCE – p.5/30

  10. Electrocaloric entropy change Calculated entropy S(T) of BaTiO 3 : H.-X. Cao et al., J. Appl. Phys. 106 , 094104 (2009) ∆ T (model calculation) is of the order of 10 K IIMEC-2012 MCE – p.5/30

  11. Electrocaloric entropy change Calculated entropy S(T) of BaTiO 3 : H.-X. Cao et al., J. Appl. Phys. 106 , 094104 (2009) ∆ T (model calculation) is of the order of 10 K IIMEC-2012 MCE – p.5/30

  12. Caloric effects in ferroic materials Magnetocaloric effect (MCE): Magnetic materials change their thermodynamic properties like entropy and specific heat under the influence of a control parmeter: S(T, V, H, x, . . . ), C(T, V, H, x, . . . ) Effect known since 1880: E. Warburg, Ann. Phys. 13 , 131 (1881) Last decade: Materials which work at ambient temperature MCE: ∆ S ( T, H ) ≈ 10 J/(kg K), ∆ T ad ( T, H ) ≈ 1 − 10 K Challenge: How can one improve “systematically” the caloric effect? Issue: Strong interaction of experimental and theoretical groups Reviews: A.M. Tishin & Y.I. Spichkin (IOP , Bristol, 2003) The Magnetocaloric Effect and its Applications N.A. de Oliveira & P .J. von Ranke, Phys. Rep. 489 , 89 (2010) Theoretical aspects of the magnetocaloric effect V.D. Buchelnikov & V.V. Sokolovskii, Phys. Met. Metallogr. 112 , 633 (2011) Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys IIMEC-2012 MCE – p.6/30

  13. Giant MCE Materials 1990 FeRh Nikitin et al. 1997 Gd 5 (Ge 1 − x Si x ) 4 Pecharsky & Gschneidner 1998 RCo 2 Foldeaki et al. 2000-2002 La(Fe, Si) 13 Hu et al., Fukamichi et al. 2001 MnAs 1 − x Sb x Wada et al. 2002 MnFe(P , As) Tegus et al. 2003 Co(S 1 − x Se x ) 2 Yamada & Goto 2005 Ni 2 Mn 1+ x In 1 − x Krenke et al. 2009 MnCoGeB Trung et al. Complex crystalline and magnetic structures & “magnetostructural” phase transformations IIMEC-2012 MCE – p.7/30

  14. Example of magnetostructural transition Valence electron number/atom ( e / a ) Valence electron number/atom ( e / a ) 7.50 7.55 7.60 7.65 7.70 7.75 7.80 7.50 7.55 7.60 7.65 7.70 7.75 7.80 270 P (L2 1 ) 600 600 600 600 Ni 2+x Mn 1-x Ga Ni 2+x Mn 1-x Ga Ni 2 MnGa 260 continuous 500 500 500 500 250 multicritical PM L2 1 PM PM L2 1 PM Temperature (K) Temperature (K) Temperature (K) point MCE T C T C martensite martensite 400 400 400 400 discontinuous X 240 discontinuous FM L2 1 FM L2 1 FM L2 1 FM L2 1 300 300 300 300 T I T I 230 M S M S 5M MSME 200 200 200 200 220 FM 5M, 7M FM L1 0 FM 5M, 7M FM L1 0 I (c/a < 1) (c/a > 1) (c/a < 1) (c/a > 1) 100 100 100 100 210 Phonon softening (TA 2 ) of P phase: precursor to the X-phase? FM non-modulated tetragonal martensite FM non-modulated tetragonal martensite 200 0 0 0 0 0 20 40 60 80 100 120 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 Compressive stress σ || [001] P (MPa) Ni excess (x) Ni excess (x) IIMEC-2012 MCE – p.8/30

  15. Example of magnetostructural transition Valence electron number/atom ( e / a ) Valence electron number/atom ( e / a ) 7.50 7.55 7.60 7.65 7.70 7.75 7.80 7.50 7.55 7.60 7.65 7.70 7.75 7.80 270 P (L2 1 ) 600 600 600 600 Ni 2+x Mn 1-x Ga Ni 2+x Mn 1-x Ga Ni 2 MnGa 260 continuous 500 500 500 500 250 multicritical PM L2 1 PM PM L2 1 PM Temperature (K) Temperature (K) Temperature (K) point MCE T C T C martensite martensite 400 400 400 400 discontinuous X 240 discontinuous FM L2 1 FM L2 1 FM L2 1 FM L2 1 300 300 300 300 T I T I 230 M S M S 5M MSME 200 200 200 200 220 FM 5M, 7M FM L1 0 FM 5M, 7M FM L1 0 I (c/a < 1) (c/a > 1) (c/a < 1) (c/a > 1) 100 100 100 100 210 Phonon softening (TA 2 ) of P phase: precursor to the X-phase? FM non-modulated tetragonal martensite FM non-modulated tetragonal martensite 200 0 0 0 0 0 20 40 60 80 100 120 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 Compressive stress σ || [001] P (MPa) Ni excess (x) Ni excess (x) 23 50% Ni 48% Ni 46% Ni 44% Ni Ni 2-x Mn 1+x+y Ga 1-y 300 K 22 (e/a = 7.64) M S = 280 K (e/a = 7.61) Ga (at. %) 21 370 K (e/a = 7.74) 20 Tetragonal Ni 49 Mn 32 Ga 19 Mixed T C = 368, M S = 353 K Orthorhombic 19 Cubic / 5M 26 28 30 32 34 Mn (at. %) IIMEC-2012 MCE – p.8/30

  16. Example of magnetostructural transition Valence electron number/atom ( e / a ) Valence electron number/atom ( e / a ) 7.50 7.55 7.60 7.65 7.70 7.75 7.80 7.50 7.55 7.60 7.65 7.70 7.75 7.80 270 P (L2 1 ) 600 600 600 600 Ni 2+x Mn 1-x Ga Ni 2+x Mn 1-x Ga Ni 2 MnGa 260 continuous 500 500 500 500 250 multicritical PM L2 1 PM PM L2 1 PM Temperature (K) Temperature (K) Temperature (K) point MCE T C T C martensite martensite 400 400 400 400 discontinuous X 240 discontinuous FM L2 1 FM L2 1 FM L2 1 FM L2 1 300 300 300 300 T I T I 230 M S M S 5M MSME 200 200 200 200 220 FM 5M, 7M FM L1 0 FM 5M, 7M FM L1 0 I (c/a < 1) (c/a > 1) (c/a < 1) (c/a > 1) 100 100 100 100 210 Phonon softening (TA 2 ) of P phase: precursor to the X-phase? FM non-modulated tetragonal martensite FM non-modulated tetragonal martensite 200 0 0 0 0 0 20 40 60 80 100 120 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 Compressive stress σ || [001] P (MPa) Ni excess (x) Ni excess (x) 23 50% Ni 48% Ni 46% Ni 44% Ni Ni 2-x Mn 1+x+y Ga 1-y 300 K 22 (e/a = 7.64) M S = 280 K (e/a = 7.61) Top: V. V. Khovaylo et al., PRB 72 , 224408 (2005) Ga (at. %) 21 370 K H. Kushida et al., Scripta Mater. 60 , 96 (2009) (e/a = 7.74) 20 Left: Tetragonal Ni 49 Mn 32 Ga 19 Mixed M. Richard et al., Scripta Mater. 54 , 1797 (2006) T C = 368, M S = 353 K Orthorhombic 19 Cubic / 5M 26 28 30 32 34 Mn (at. %) IIMEC-2012 MCE – p.8/30

Recommend


More recommend