Interpolation polynomial * Means finding an approximate value to a function as a polynomial of degree n using n+1 points. Methods of solution
1- Quadratic Lagrange x x x x 1 2 0 f x y y y 0 1 2 P x L y L y L y 2 0 0 1 1 2 2 x x x x 1 2 L 0 x x x x x x x x 0 1 0 2 0 1 L 2 x x x x x x x x 0 2 2 0 2 1 L 1 x x x x 1 0 1 2
Example * Interpolate the following data: 1 2 3 x f(x) 1.2 4.5 3.8 2 3 x x 1 x x x x 2 1 2 2 x 5 x 6 L 0 1 2 1 3 x x x x 0 1 0 2 x x x x x 1 x 3 0 2 2 L x 4 x 3 1 x x x x 2 1 2 3 1 0 1 2 x 1 x 2 1 x x x x 2 0 1 2 x 3 x 2 L 2 x x x x 3 1 3 2 2 0 2 1 P x L y L y L y 1.2 L 4.5 L 3.8 L 2 0 0 1 1 2 2 0 1 2 2 2 x 9.3 x 6.1
Example * Given that: 9 9.5 11 x f(x) 2.19 2.25 2.39 approximate . If , evaluate f x Ln x P 2 9.2 the error. x 9.5 x 11 x x x x 1 2 2 L x 20.5 x 104.5 0 9 9.5 9 11 x x x x 0 1 0 2 x x x x x 9 x 11 4 0 2 2 L x 20 x 99 1 x x x x 9.5 9 9.5 11 3 1 0 1 2 9 9.5 x x 1 x x x x 2 0 1 3 x 18.5 x 85.5 L 2 11 9 11 9.5 x x x x 2 0 2 1
P x L y L y L y 2 0 0 1 1 2 2 2.19 L 2.25 L 2.39 L 0 1 2 2 1.58 29.11 136.2 x x P 2 (9.2) 2.1192 Exact value Ln (9.2) 2.2192 Error = Exact value - Approximate value f (9.2) P 9.2 2 2.2192-2.1192 0.1
2- Newton divided difference x x x x x 1 2 0 n 1 f x ( ) y y y y 0 1 2 n 1 P x a a x x a x x x x n 0 1 0 2 0 1 + a x x x x x x 0 1 1 n n y y 1 0 a y 0 , a , 0 1 x x 1 0
Example * Given that: 9 9.5 11 x f(x) 2.19 2.25 2.39 approximate . If , evaluate f x Ln x P 2 9.2 the error. x y First Stage Second Stage a a 0 1 9 2.19 a 2.25 2.19 2 0.12 9.5 9 0.093 0.12 0.0135 9.5 2.25 11 9 2.39 2.25 0.093 11 2.39 11 9.5
P x a a x x a x x x x 2 0 1 0 2 0 1 2.19 0.12 x 9 0.0135 x 9 x 9.5 2 0.0135 +0.36975 0.04425 x x P 2 (9.2) 2.21481 Exact value Ln (9.2) 2.2192 Error = Exact value - Approximate value f (9.2) P 9.2 2 2.2192-2.21481 0.00439
Example * Given that: 0 1 2 4 x f(x) 1 3 6 8 approximate . P 3 1.8 x y First Stage Second Stage Third Stage a a 0 1 3 1 a 0 1 2 2 3 2 1 0 1 a 2 1 3 1 3 2 0 2 6 3 7 3 2 3 2 1 4 0 24 2 6 1 3 2 8 6 1 4 1 3 4 8 4 2
P x a a x x a x x x x 3 0 1 0 2 0 1 + a x x x x x x 3 0 1 2 1 7 1 2 x 0 x 0 x 1 x 0 x 1 x 2 2 24 7 3 2 x 1.375 x 0.916667 x 1 24 P 3 (1.8) 5.404
Recommend
More recommend