Integer Invariants of Abelian Cayley Graphs Deelan Jalil James Madison University July 26, 2013 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 1 / 29
Cube example. . Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 2 / 29
Cube example. (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 3 / 29
Cube example. (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) (0 , 0 , 0) 0 1 1 0 1 0 0 0 (0 , 0 , 1) 1 0 0 1 0 1 0 0 (0 , 1 , 0) 1 0 0 1 0 0 1 0 (0 , 1 , 1) 0 1 1 0 0 0 0 1 (1 , 0 , 0) 1 0 0 0 0 1 1 0 (1 , 0 , 1) 0 1 0 0 1 0 0 1 (1 , 1 , 0) 0 0 1 0 1 0 0 1 (1 , 1 , 1) 0 0 0 1 0 1 1 0 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 4 / 29
Cube example. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 5 / 29
Cube example. 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 6 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: 0 0 · · · 0 d 1 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , ... , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 7 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: 0 0 · · · 0 d 1 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , ... , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Swap any two rows/columns. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 7 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: 0 0 · · · 0 d 1 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , ... , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Swap any two rows/columns. Multiply any row/column by a nonzero integer. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 7 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: 0 0 · · · 0 d 1 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , ... , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Swap any two rows/columns. Multiply any row/column by a nonzero integer. Add a integer multiple of one row/column to another. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 7 / 29
Cube example part 2. (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) (0 , 0 , 0) 0 1 1 0 1 0 0 0 (0 , 0 , 1) 1 0 0 1 0 1 0 0 (0 , 1 , 0) 1 0 0 1 0 0 1 0 (0 , 1 , 1) 0 1 1 0 0 0 0 1 (1 , 0 , 0) 1 0 0 0 0 1 1 0 (1 , 0 , 1) 0 1 0 0 1 0 0 1 (1 , 1 , 0) 0 0 1 0 1 0 0 1 (1 , 1 , 1) 0 0 0 1 0 1 1 0 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 8 / 29
Cube example part 2. (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) (0 , 0 , 0) 0 − 1 − 1 0 − 1 0 0 0 (0 , 0 , 1) − 1 0 0 − 1 0 − 1 0 0 (0 , 1 , 0) − 1 0 0 − 1 0 0 − 1 0 (0 , 1 , 1) 0 − 1 − 1 0 0 0 0 − 1 (1 , 0 , 0) − 1 0 0 0 0 − 1 − 1 0 (1 , 0 , 1) 0 − 1 0 0 − 1 0 0 − 1 (1 , 1 , 0) 0 0 − 1 0 − 1 0 0 − 1 (1 , 1 , 1) 0 0 0 − 1 0 − 1 − 1 0 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 9 / 29
Cube example part 2. (0 , 0 , 0) (0 , 0 , 1) (0 , 1 , 0) (0 , 1 , 1) (1 , 0 , 0) (1 , 0 , 1) (1 , 1 , 0) (1 , 1 , 1) (0 , 0 , 0) 3 − 1 − 1 0 − 1 0 0 0 (0 , 0 , 1) − 1 3 0 − 1 0 − 1 0 0 (0 , 1 , 0) − 1 0 3 − 1 0 0 − 1 0 (0 , 1 , 1) 0 − 1 − 1 3 0 0 0 − 1 (1 , 0 , 0) − 1 0 0 0 3 − 1 − 1 0 (1 , 0 , 1) 0 − 1 0 0 − 1 3 0 − 1 (1 , 1 , 0) 0 0 − 1 0 − 1 0 3 − 1 (1 , 1 , 1) 0 0 0 − 1 0 − 1 − 1 3 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 10 / 29
Cube example part 2. 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 11 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: d 1 0 0 · · · 0 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , · · · , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 12 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: d 1 0 0 · · · 0 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , · · · , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Invariant factors. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 12 / 29
Smith normal form. Given any integer matrix A , we can perform row and column operations so that: d 1 0 0 · · · 0 0 d 2 0 · · · 0 0 0 · · · 0 d 3 A = where d 1 | d 2 , d 2 | d 3 , · · · , d n − 1 | d n . . . . . ... . . . . . . . . 0 0 0 · · · d n Invariant factors. Elementary divisors. Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 12 / 29
Invariant factors vs. Elementary divisors 1 0 0 0 0 3 0 0 0 0 6 0 0 0 0 60 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 13 / 29
Invariant factors vs. Elementary divisors 1 0 0 0 0 3 0 0 0 0 6 0 0 0 0 60 Invariant factors: 1 , 3 , 6 , 60 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 13 / 29
Invariant factors vs. Elementary divisors 1 0 0 0 0 3 0 0 0 0 6 0 0 0 0 60 Invariant factors: 1 , 3 , 6 , 60 1 0 0 0 0 3 0 0 0 0 3 · 2 0 5 · 3 · 2 2 0 0 0 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 13 / 29
Invariant factors vs. Elementary divisors 1 0 0 0 0 3 0 0 0 0 6 0 0 0 0 60 Invariant factors: 1 , 3 , 6 , 60 1 0 0 0 0 3 0 0 0 0 3 · 2 0 5 · 3 · 2 2 0 0 0 Elementary divisors: 2 , 2 2 , 3 , 3 , 3 , 5 Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 13 / 29
Back to the title. Integer Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 14 / 29
Back to the title. Integer Invariants Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 14 / 29
Back to the title. Integer Invariants Abelian Cayley Graphs Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 14 / 29
Back to the title. Integer Invariants Abelian Cayley Graphs Graph: edges and vertices Deelan Jalil (2013) Integer Invariants of Abelian Cayley Graphs July 26, 2013 14 / 29
Recommend
More recommend