instance level recognition
play

Instance-level recognition Cordelia Schmid INRIA, Grenoble - PowerPoint PPT Presentation

Instance-level recognition Cordelia Schmid INRIA, Grenoble Instance-level recognition Search for particular objects and scenes in large databases Difficulties Finding the object despite possibly large changes in scale, viewpoint,


  1. Instance-level recognition Cordelia Schmid INRIA, Grenoble

  2. Instance-level recognition Search for particular objects and scenes in large databases …

  3. Difficulties Finding the object despite possibly large changes in scale, viewpoint, lighting and partial occlusion  requires invariant description Scale Viewpoint Lighting Occlusion

  4. Difficulties • Very large images collection  need for efficient indexing – Flickr has 2 billion photographs, more than 1 million added daily – Facebook has 15 billion images (~27 million added daily) – Large personal collections

  5. Applications Search photos on the web for particular places Find these landmarks ...in these images and 1M more

  6. Applications • Finding stolen/missing objects in a large collection

  7. Applications • Copy detection for images and videos Search in 200h of video Query video

  8. Applications • Sony Aibo – Robotics – Recognize docking station – Communicate with visual cards – Place recognition – Loop closure in SLAM 8 K. Grauman, B. Leibe S lide credit: David Lowe

  9. Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing

  10. Local invariant features • Introduction to local features • Harris interest points + SSD, ZNCC, SIFT • Scale invariant interest point detectors

  11. Local features ( ) local descriptor Many local descriptors per image Robust to occlusion/clutter + no object segmentation required Photometric : distinctive Invariant : to image transformations + illumination changes

  12. Local features Interest Points Contours/lines Region segments

  13. Local features Interest Points Contours/lines Region segments Patch descriptors, i.e. SIFT Mi-points, angles Color/texture histogram

  14. Interest points / invariant regions Harris detector Scale inv. detector

  15. Contours / lines • Extraction de contours – Zero crossing of Laplacian – Local maxima of gradients • Chain contour points (hysteresis) , Canny detector • Recent contour detectors – global probability of boundary ( gPb ) detector [Malik et al., UC Berkeley, CVPR’08] – Structured forests for fast edge detection (SED) [Dollar and Zitnick, ICCV’13]

  16. Regions segments / superpixels Simple linear iterative clustering (SLIC) Normalized cut [Shi & Malik], Mean Shift [Comaniciu & Meer], SLIC superpixels [PAMI’12], …

  17. Matching of local descriptors Find corresponding locations in the image

  18. Illustration – Matching Interest points extracted with Harris detector (~ 500 points)

  19. Illustration – Matching Matching Interest points matched based on cross-correlation (188 pairs)

  20. Illustration – Matching Global constraints Global constraint - Robust estimation of the fundamental matrix 99 inliers 89 outliers

  21. Application: Panorama stitching Images courtesy of A. Zisserman.

  22. Overview • Introduction to local features • Harris interest points + SSD, ZNCC, SIFT • Scale invariant interest point detectors

  23. Harris detector [Harris & Stephens’88] Based on the idea of auto-correlation Important difference in all directions => interest point

  24. Harris detector  x  y Auto-correlation function for a point and a shift x y ( , ) ( , )        A x y I x y I x x y y 2 ( , ) ( ( , ) ( , )) k k k k  x y W x y ( , ) ( , ) k k  x  y ( , ) W

  25. Harris detector  x  y Auto-correlation function for a point and a shift x y ( , ) ( , )        A x y I x y I x x y y 2 ( , ) ( ( , ) ( , )) k k k k  x y W x y ( , ) ( , ) k k  x  y ( , ) W → uniform region small in all directions A { x y → contour ( , ) large in one directions → interest point large in all directions

  26. Harris detector Discret shifts are avoided based on the auto-correlation matrix with first order approximation    x         I x x y y I x y I x y I x y ( , ) ( , ) ( ( , ) ( , ))    k k k k x k k y k k y          A x y I x y I x x y y 2 ( , ) ( ( , ) ( , )) k k k k  x y W x y ( , ) ( , ) k k 2      x         I x y I x y ( , ) ( , )      x k k y k k y      x y W ( , ) k k

  27. Harris detector     I x y 2 I x y I x y ( ( , )) ( , ) ( , )  x k k x k k y k k   x            x y W x y W ( , ) ( , ) x y k k k k        I x y I x y I x y 2 y ( , ) ( , ) ( ( , ))     x k k y k k y k k     x y W x y W ( , ) ( , ) k k k k Auto-correlation matrix the sum can be smoothed with a Gaussian    2   I I I x         x y G x x y      I I I 2 y       x y y

  28. Harris detector • Auto-correlation matrix   2 I I I   x x y A x y G   ( , ) 2 I I I     x y y – captures the structure of the local neighborhood – measure based on eigenvalues of this matrix => interest point • 2 strong eigenvalues => contour • 1 strong eigenvalue => uniform region • 0 eigenvalue

  29. Interpreting the eigenvalues Classification of image points using eigenvalues of autocorrelation matrix  2 “Edge”  2 >>  1 “Corner”  1 and  2 are large,  1 ~  2 ;  1 and  2 are small; “Edge” “Flat”  1 >>  2 region  1

  30. Corner response function            R A A 2 2 det( ) trace ( ) ( ) 1 2 1 2 α : constant (0.04 to 0.06) “Edge” R < 0 “Corner” R > 0 |R| small “Edge” “Flat” R < 0 region

  31. Harris detector • Cornerness function          R A k trace A 2 k 2 det( ) ( ( )) ( ) 1 2 1 2 Reduces the effect of a strong contour • Interest point detection – Treshold (absolut, relatif, number of corners) – Local maxima         f thresh x y neighbourh ood f x y f x y , 8 ( , ) ( , )

  32. Harris Detector: Steps

  33. Harris Detector: Steps Compute corner response R

  34. Harris Detector: Steps Find points with large corner response: R> threshold

  35. Harris Detector: Steps Take only the points of local maxima of R

  36. Harris Detector: Steps

  37. Harris detector: Summary of steps 1. Compute Gaussian derivatives at each pixel 2. Compute second moment matrix A in a Gaussian window around each pixel 3. Compute corner response function R 4. Threshold R 5. Find local maxima of response function (non-maximum suppression)

  38. Harris - invariance to transformations • Geometric transformations – translation – rotation – similitude (rotation + scale change) – affine (valide for local planar objects) • Photometric transformations – Affine intensity changes (I  a I + b)

  39. Harris Detector: Invariance Properties • Rotation Ellipse rotates but its shape (i.e. eigenvalues) remains the same Corner response R is invariant to image rotation

  40. Harris Detector: Invariance Properties • Scaling Corner All points will be classified as edges Not invariant to scaling

  41. Harris Detector: Invariance Properties • Affine intensity change  Only derivatives are used => invariance to intensity shift I  I + b  Intensity scale: I  a I R R threshold x (image coordinate) x (image coordinate) Partially invariant to affine intensity change, dependent on type of threshold

  42. Comparison of patches - SSD Comparison of the intensities in the neighborhood of two interest points x 2 y ( , ) 2 x 1 y ( , ) 1 image 2 image 1 SSD : sum of square difference N N        I x i y j I x i y j 2 ( ( , ) ( , )) 1  2 1 1 1 2 2 2 N ( 2 1 )     i N j N Small difference values  similar patches

  43. Comparison of patches N N        I x i y j I x i y j 2 ( ( , ) ( , )) 1 SSD :  2 1 1 1 2 2 2 N ( 2 1 )     i N j N Invariance to photometric transformations? Intensity changes (I  I + b) => Normalizing with the mean of each patch N N          I x i y j m I x i y j m 2 1 (( ( , ) ) ( ( , ) ))  1 1 1 1 2 2 2 2 2 N ( 2 1 )     i N j N Intensity changes (I  aI + b) => Normalizing with the mean and standard deviation of each patch 2         N N I x i y j m I x i y j m 2   ( , ) ( , )    1 1 1 1 1 2 2 2 2      N ( 2 1 )       i N j N 1 2

Recommend


More recommend