Instance-level recognition: Local invariant features Cordelia Schmid INRIA, Grenoble
Overview Overview • Introduction to local features • Harris interest points + SSD, ZNCC, SIFT H i i t t i t SSD ZNCC SIFT • Scale & affine invariant interest point detectors
Local features Local features ( ) ( ) local descriptor Several / many local descriptors per image Robust to occlusion/clutter + no object segmentation required Robust to occlusion/clutter + no object segmentation required Photometric : distinctive Invariant : to image transformations + illumination changes
Local features Local features Interest Points Contours/lines Region segments
Local features Local features Interest Points Contours/lines Region segments Patch descriptors, i.e. SIFT Mi-points, angles Color/texture histogram
Interest points / invariant regions Interest points / invariant regions Harris detector Scale/affine inv. detector presented in this lecture t d i thi l t
Contours / lines Contours / lines • Extraction de contours Extraction de contours – Zero crossing of Laplacian – Local maxima of gradients Local maxima of gradients • Chain contour points (hysteresis) , Canny detector p ( y ) , y • Recent detectors – Global probability of boundary ( gPb ) detector [Malik et al., UC Berkeley] – Structured forests for fast edge detection (SED) [Dollar and S f f f (S ) Zitnick] – student presentation
Regions segments / superpixels Regions segments / superpixels Simple linear iterative clustering (SLIC) Simple linear iterative clustering (SLIC) Normalized cut [Shi & Malik], Mean Shift [Comaniciu & Meer], ….
Application: matching Application: matching Find corresponding locations in the image Find corresponding locations in the image
Illustration – Matching Illustration Matching I t Interest points extracted with Harris detector (~ 500 points) t i t t t d ith H i d t t ( 500 i t )
Illustration – Matching Illustration Matching Matching Matching I t Interest points matched based on cross-correlation (188 pairs) t i t t h d b d l ti (188 i )
Illustration – Matching Illustration Global constraints Global constraints Matching Global constraint Global constraint - Robust estimation of the fundamental matrix Robust estimation of the fundamental matrix 99 inliers 99 inliers 89 outliers 89 outliers
Application: Panorama stitching pp g Images courtesy of A. Zisserman.
Application: Instance-level recognition Application: Instance level recognition Search for particular objects and scenes in large databases Search for particular objects and scenes in large databases …
Difficulties Finding the object despite possibly large changes in scale, viewpoint, lighting and partial occlusion l i i t li hti d ti l l i requires invariant description S Scale l Viewpoint Lighting Occlusion
Difficulties Difficulties • Very large images collection need for efficient indexing V l i ll ti d f ffi i t i d i – Flickr has 2 billion photographs, more than 1 million added daily Fli k h 2 billi h t h th 1 illi dd d d il – Facebook has 15 billion images (~27 million added daily) Facebook has 15 billion images ( 27 million added daily) – Large personal collections – Large personal collections – Video collections, i.e., YouTube Video collections, i.e., YouTube
Applications pp Search photos on the web for particular places p p p Find these landmarks ...in these images and 1M more
Applications Applications • Take a picture of a product or advertisement Take a picture of a product or advertisement find relevant information on the web
Applications Applications • Copy detection for images and videos Search in 200h of video Query video
Overview Overview • Introduction to local features • Harris interest points + SSD, ZNCC, SIFT H i i t t i t SSD ZNCC SIFT • Scale & affine invariant interest point detectors
Harris detector [Harris & Stephens’88] Harris detector [Harris & Stephens 88] B Based on the idea of auto-correlation d th id f t l ti I Important difference in all directions => interest point t t diff i ll di ti i t t i t
Harris detector Harris detector x y Auto-correlation function for a point and a shift x y ( , ) ( , ) A A x y I I x y I I x x y y 2 2 ( ( , ) ) ( ( ( ( , ) ) ( ( , )) )) k k k k x y W x y ( , ) ( , ) k k x x y y ( ( , ) ) W
Harris detector Harris detector x y Auto-correlation function for a point and a shift x y ( , ) ( , ) A A x y I I x y I I x x y y 2 2 ( ( , ) ) ( ( ( ( , ) ) ( ( , )) )) k k k k x y W x y ( , ) ( , ) k k x x y y ( ( , ) ) W → uniform region small in all directions A { y { x y → contour ( ( , , ) ) large in one directions g → interest point large in all directions
Harris detector Harris detector Discret shifts are avoided based on the auto-correlation matrix with first order approximation x I I x x x x y y y y I I x x y y I I x x y y I I x x y y ( ( , ) ) ( ( , ) ) ( ( ( ( , ) ) ( ( , )) )) k k k k x k k y k k y A x y I x y I x x y y 2 ( , ) ( ( , ) ( , )) k k k k x y W x y ( , ) ( , ) k k 2 x I x y I x y ( , ) ( , ) x k k y k k y y x x y y W W ( ( , ) ) k k k k
Harris detector Harris detector I x y 2 I x y I x y ( ( , )) ( , ) ( , ) x k k x k k y k k x x x y W W x y W W ( ( , ) ) ( ( , ) ) x y k k k k I x y I x y I x y 2 y ( , ) ( , ) ( ( , )) x k k y k k y k k x y W x y W ( , ) ( , ) k k k k Auto-correlation matrix the sum can be smoothed with a Gaussian the sum can be smoothed with a Gaussian 2 I I I x x y G G x x x x y y I I I 2 y x y y
Harris detector Harris detector • Auto-correlation matrix Auto correlation matrix 2 I I I x x x x y y A x y G ( ( , ) ) 2 I I I x y y – captures the structure of the local neighborhood – measure based on eigenvalues of this matrix measure based on eigenvalues of this matrix => interest point • 2 strong eigenvalues => contour • 1 strong eigenvalue • 0 eigenvalue => uniform region
Interpreting the eigenvalues Interpreting the eigenvalues Classification of image points using eigenvalues of autocorrelation matrix : 2 “Edge” 2 >> 1 2 >> 1 “Corner” 1 and 2 are large, 1 ~ 2 ; \ 1 and 2 are small; “Edge” “Flat” 1 >> 2 region 1
Corner response function Corner response function R A A 2 2 det( ( ) ) trace ( ( ) ) ( ( ) ) 1 1 2 2 1 1 2 2 α : constant (0.04 to 0.06) “Edge” R < 0 R < 0 “Corner” “Corner” R > 0 |R| small “Edge” “Flat” R < 0 region
Harris detector Harris detector • Cornerness function C f ti R A k trace A 2 k 2 det( ( ) ) ( ( ( ( )) )) ( ( ) ) 1 1 2 2 1 1 2 2 R d Reduces the effect of a strong contour th ff t f t t • • Interest point detection Interest point detection – Treshold (absolut, relatif, number of corners) – Local maxima f thresh x y neighbourh ood f x y f x y , 8 ( , ) ( , )
Harris Detector: Steps Harris Detector: Steps
Harris Detector: Steps Harris Detector: Steps Compute corner response R
Harris Detector: Steps Harris Detector: Steps Find points with large corner response: R> threshold
Harris Detector: Steps Harris Detector: Steps Take only the points of local maxima of R
Harris Detector: Steps Harris Detector: Steps
Harris detector: Summary of steps Harris detector: Summary of steps 1. Compute Gaussian derivatives at each pixel 2. Compute second moment matrix A in a Gaussian window around each pixel i d d h i l 3. Compute corner response function R 4. Threshold R 5. Find local maxima of response function (non-maximum suppression) i )
Recommend
More recommend