INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution for inverse problems Tikhonov regularization: Solve min u ∈ X S ( Ku , f ) + Φ( u ) S discrepancy for Ku = f , Φ regularization functional ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 10 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution for inverse problems Tikhonov regularization: Solve min u ∈ X S ( Ku , f ) + Φ( u ) S discrepancy for Ku = f , Φ regularization functional Two viewpoints: 1 Monolithic regularization min u ∈ X S ( Ku , f ) + Φ( u ), Φ = Φ 1 � . . . � Φ m 2 Vector-valued regularization � � ( u 1 ,..., u m ) ∈ X m S min K ( u 1 + . . . + u m ) , f + Φ 1 ( u 1 ) + . . . Φ m ( u m ) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 10 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution for inverse problems Tikhonov regularization: Solve min u ∈ X S ( Ku , f ) + Φ( u ) S discrepancy for Ku = f , Φ regularization functional Two viewpoints: 1 Monolithic regularization min u ∈ X S ( Ku , f ) + Φ( u ), Φ = Φ 1 � . . . � Φ m 2 Vector-valued regularization � � ( u 1 ,..., u m ) ∈ X m S min K ( u 1 + . . . + u m ) , f + Φ 1 ( u 1 ) + . . . Φ m ( u m ) Monolithic regularization: Intrinsic decomposition & problem-adapted interpretation ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 10 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING General existence result Theorem: X reflexive Banach space, Y normed space K : X → Y bounded linear S ( · , f ) : Y → [0 , ∞ ] proper, convex, l.s.c. Φ : X ∈ [0 , ∞ ] proper, convex, l.s.c. Φ 1-homogeneous, dim ker(Φ) < ∞ , and coercive, i.e., � u − Pu � X ≤ C Φ( u ) for P : X → ker(Φ) bounded linear projector Then: min u ∈ X S ( Ku , f ) + α Φ( u ) has a solution for each α > 0 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 11 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING General regularization properties min u ∈ X S ( Ku , f ) + α Φ( u ) Let: Y Hilbert space, S ( v , f ) = 1 2 � v − f � 2 Y Then: (Subsequential) stability for varying f Noise level δ → 0 and α → 0, δ 2 /α → 0 ⇒ (Subsequential) convergence Source condition K ∗ w ∈ ∂ Φ( u † ), α ∼ δ ⇒ O ( δ ) for the Bregman distance w.r.t. Φ ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 12 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING General regularization properties min u ∈ X S ( Ku , f ) + α Φ( u ) Let: Y Hilbert space, S ( v , f ) = 1 2 � v − f � 2 Y Then: (Subsequential) stability for varying f Noise level δ → 0 and α → 0, δ 2 /α → 0 ⇒ (Subsequential) convergence Source condition K ∗ w ∈ ∂ Φ( u † ), α ∼ δ ⇒ O ( δ ) for the Bregman distance w.r.t. Φ Difficulties: dim ker(Φ) = ∞ ⇒ K has to be stably invertible on ker(Φ) Φ not coercive ⇒ K has to be stably invertible on X ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 12 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution regularization Lemma: Φ 1 , Φ 2 : X → [0 , ∞ ] proper, convex, l.s.c. Φ i 1-homogeneous, dim ker(Φ) < ∞ for i = 1 , 2 Then: Φ 1 � Φ 2 : X → [0 , ∞ ] is exact, proper, convex, l.s.c., 1-homogeneous, ker Φ 1 � Φ 2 = ker Φ 1 + ker Φ 2 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 13 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution regularization Lemma: Φ 1 , Φ 2 : X → [0 , ∞ ] proper, convex, l.s.c. Φ i 1-homogeneous, dim ker(Φ) < ∞ for i = 1 , 2 Then: Φ 1 � Φ 2 : X → [0 , ∞ ] is exact, proper, convex, l.s.c., 1-homogeneous, ker Φ 1 � Φ 2 = ker Φ 1 + ker Φ 2 Lemma: Additionally: X ֒ − ֒ → Z , Z Banach space and � � � u � X ≤ C � u � Z + Φ i ( u ) for i = 1 , 2 and all u ∈ X Then: Φ 1 � Φ 2 is coercive, i.e., � u − Pu � X ≤ C Φ( u ) for all u ∈ X ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 13 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution regularization Lemma: Φ 1 , Φ 2 : X → [0 , ∞ ] proper, convex, l.s.c. Φ i 1-homogeneous, dim ker(Φ) < ∞ for i = 1 , 2 Then: Φ 1 � Φ 2 : X → [0 , ∞ ] is exact, proper, convex, l.s.c., 1-homogeneous, ker Φ 1 � Φ 2 = ker Φ 1 + ker Φ 2 Lemma: Additionally: X ֒ − ֒ → Z , Z Banach space and � � � u � X ≤ C � u � Z + Φ i ( u ) for i = 1 , 2 and all u ∈ X Then: Φ 1 � Φ 2 is coercive, i.e., � u − Pu � X ≤ C Φ( u ) for all u ∈ X � sufficient conditions for a regularizer ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 13 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Examples TV - TV 2 infimal convolution: TV and TV 2 have finite-dimensional kernels + embedding: � � � u � 1 + TV 2 ( u ) � u � BV ≤ � u � BV 2 ≤ C Consequently: TV � β TV 2 is a regularizer ( β > 0) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 14 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Examples TV - TV 2 infimal convolution: TV and TV 2 have finite-dimensional kernels + embedding: � � � u � 1 + TV 2 ( u ) � u � BV ≤ � u � BV 2 ≤ C Consequently: TV � β TV 2 is a regularizer ( β > 0) TV - L 1 ◦ ∆ infimal convolution: ker(TV � � · � M ◦ ∆) = { u ∈ BV | u harmonic } Infinite-dimensional kernel ⇒ not a regularizer ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 14 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Examples TV - TV 2 infimal convolution: TV and TV 2 have finite-dimensional kernels + embedding: � � � u � 1 + TV 2 ( u ) � u � BV ≤ � u � BV 2 ≤ C Consequently: TV � β TV 2 is a regularizer ( β > 0) TV - L 1 ◦ ∆ infimal convolution: ker(TV � � · � M ◦ ∆) = { u ∈ BV | u harmonic } Infinite-dimensional kernel ⇒ not a regularizer TV - G -norm/ TV - H − 1 infimal convolution: � · � TV ∗ / � · � H − 1 not coercive in L p -spaces Infimal convolution not coercive ⇒ not a regularizer ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 14 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Examples TV - TV 2 infimal convolution: TV and TV 2 have finite-dimensional kernels + embedding: � � � u � 1 + TV 2 ( u ) � u � BV ≤ � u � BV 2 ≤ C Consequently: TV � β TV 2 is a regularizer ( β > 0) TV - L 1 ◦ ∆ infimal convolution: ker(TV � � · � M ◦ ∆) = { u ∈ BV | u harmonic } Infinite-dimensional kernel ⇒ not a regularizer TV - G -norm/ TV - H − 1 infimal convolution: � · � TV ∗ / � · � H − 1 not coercive in L p -spaces Infimal convolution not coercive ⇒ not a regularizer � Develop regularizing cartoon/texture models + complex smoothness-based regularizers ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 14 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Outline 1 Infimal convolution regularization 2 Total generalized variation Definition and properties Applications 3 Infimal convolution TGV Accelerated dynamic MRI 4 Infimal convolution of oscillation TGV Oscillation TGV and infimal convolution Numerical realization Applications 5 Summary ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 15 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Total generalized variation Motivation: TV-based first-order regularization favors certain artifacts Total generalized variation: [B./Kunisch/Pock ’10] �� � u div k v d x TGV k � α ( u ) = sup noisy image � Ω c (Ω , Sym k (I R d )) , v ∈ C k � � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 α = ( α 0 , . . . , α k − 1 ) > 0 weights Second-order version: TGV 2 α ( u )= min α 1 �∇ u − w � M + α 0 �E w � M TV-regularization w ∈ BD(Ω) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 16 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Total generalized variation Motivation: TV-based first-order regularization favors certain artifacts Total generalized variation: [B./Kunisch/Pock ’10] �� � u div k v d x TGV k � α ( u ) = sup noisy image � Ω c (Ω , Sym k (I R d )) , v ∈ C k � � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 α = ( α 0 , . . . , α k − 1 ) > 0 weights Second-order version: TGV 2 α ( u )= min α 1 �∇ u − w � M + α 0 �E w � M TGV 2 α -regularization w ∈ BD(Ω) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 16 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces Advanced properties: [B./Valkonen ’11] BGV 2 α (Ω) = BV(Ω) in the sense of equivalent norms TGV 2 α is coercive in the sense � u − Pu � BV ≤ C TGV 2 α ( u ) for P : L 1 (Ω) → Π 1 continuous projection ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV 2 α Basic properties: [B./Kunisch/Pock ’10] TGV 2 α is proper, convex, lower semi-continuous TGV 2 α is translation and rotation invariant TGV 2 α + � · � 1 gives the Banach space BGV 2 α (Ω) α ) = Π 1 affine functions ker(TGV 2 TGV 2 α measures piecewise affine only at the interfaces Advanced properties: [B./Valkonen ’11] BGV 2 α (Ω) = BV(Ω) in the sense of equivalent norms TGV 2 α is coercive in the sense � u − Pu � BV ≤ C TGV 2 α ( u ) for P : L 1 (Ω) → Π 1 continuous projection ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 17 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Existence and stability Theorem: [B./Valkonen ’11] 1 < p ≤ d / ( d − 1) Optimization problem K : L p (Ω) → H 1 2 � Ku − f � 2 min linear and continuous, ⇒ u ∈ L p (Ω) + TGV 2 α ( u ) H Hilbert space K injective on Π 1 possesses a solution ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 18 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Existence and stability Theorem: [B./Valkonen ’11] 1 < p ≤ d / ( d − 1) Optimization problem K : L p (Ω) → H 1 2 � Ku − f � 2 min linear and continuous, ⇒ u ∈ L p (Ω) + TGV 2 α ( u ) H Hilbert space K injective on Π 1 possesses a solution � u n ⇀ u in L p (Ω) (subseq.) Stability: f n → f in H ⇒ TGV 2 α ( u n ) → TGV 2 α ( u ) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 18 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Example: Denoising a “cartoon” image � u − f � 2 + TGV 2 Solve: min α ( u ) 2 u ∈ L 2 (Ω) noisy image ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 19 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Example: Denoising a “cartoon” image � u − f � 2 + TGV 2 Solve: min α ( u ) 2 u ∈ L 2 (Ω) TV regularization ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 19 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Example: Denoising a “cartoon” image � u − f � 2 + TGV 2 Solve: min α ( u ) 2 u ∈ L 2 (Ω) TGV 2 α regularization ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 19 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Electron tomography Joint work with Georg Haberfehlner and Richard Huber Scanning Transmission Electron Microscopy (STEM): Focused electron beam High Angle Annular Dark Field (HAADF) � non Bragg-scattered electrons � proportional to mass-thickness � Reconstruction via Radon inversion ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 20 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularized reconstruction Reconstruction of one slice: Sinogram Projections ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 21 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularized reconstruction Reconstruction of one slice: Filtered back-projection Projections ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 21 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularized reconstruction Reconstruction of one slice: TV-regularization Projections ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 21 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularized reconstruction Reconstruction of one slice: TGV-regularization Projections ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 21 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Outline 1 Infimal convolution regularization 2 Total generalized variation Definition and properties Applications 3 Infimal convolution TGV Accelerated dynamic MRI 4 Infimal convolution of oscillation TGV Oscillation TGV and infimal convolution Numerical realization Applications 5 Summary ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 22 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � ǫ | ∂ x 1 u | 2 + ǫ | ∂ x 2 u | 2 + | ∂ t u | 2 d t d x TV ǫ x ( u ) = [0 , T ] × Ω ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � ǫ | ∂ x 1 u | 2 + ǫ | ∂ x 2 u | 2 + | ∂ t u | 2 d t d x TV ǫ x ( u ) = [0 , T ] × Ω Compressed TV ǫ x ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Compressed TV ǫ t ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω TV ǫ t ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Approach: Optimal balancing with infimal convolution (IC) ICTV ǫ = TV ǫ x � TV ǫ t ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Approach: Optimal balancing with infimal convolution (IC) ICTV ǫ = TV ǫ x � TV ǫ t Compressed ICTV ǫ ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Approach: Optimal balancing with infimal convolution (IC) ICTV ǫ = TV ǫ x � TV ǫ t ICTV ǫ ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Approach: Optimal balancing with infimal convolution (IC) ICTV ǫ = TV ǫ x � TV ǫ t u 1 u 2 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Regularization for image sequences Motivation: Straightforward spatio-temporal regularization � � | ∂ x 1 u | 2 + | ∂ x 2 u | 2 + ǫ | ∂ t u | 2 d t d x TV ǫ t ( u ) = [0 , T ] × Ω Approach: Optimal balancing with infimal convolution (IC) ICTV ǫ = TV ǫ x � TV ǫ t � Use infimal convolution of TGV u 1 u 2 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 23 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution TGV Definition: Anisotropic Total Generalized Variation �� � u div k v d x TGV k � � v ∈ C k c (Ω , Sym k (I R d )) , β ( u ) = sup � Ω � div l v � ∞ ,β ∗ l ≤ 1, l=0,. . . ,k-1 β = ( | · | β 0 , . . . , | · | β k − 1 ) tensor norms � v l � ∞ ,β ∗ l = sup x ∈ Ω | v l ( x ) | β ∗ l , | · | β ∗ l dual norm ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 24 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution TGV Definition: Anisotropic Total Generalized Variation �� � u div k v d x TGV k � � v ∈ C k c (Ω , Sym k (I R d )) , β ( u ) = sup � Ω � div l v � ∞ ,β ∗ l ≤ 1, l=0,. . . ,k-1 β = ( | · | β 0 , . . . , | · | β k − 1 ) tensor norms � v l � ∞ ,β ∗ l = sup x ∈ Ω | v l ( x ) | β ∗ l , | · | β ∗ l dual norm Infimal convolution TGV: [Holler/Kunisch ’14] ICTGV k β = TGV k 1 β 1 � . . . � TGV k m β m ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 24 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution TGV Definition: Anisotropic Total Generalized Variation �� � u div k v d x TGV k � v ∈ C k � c (Ω , Sym k (I R d )) , β ( u ) = sup � Ω � div l v � ∞ ,β ∗ l ≤ 1, l=0,. . . ,k-1 β = ( | · | β 0 , . . . , | · | β k − 1 ) tensor norms � v l � ∞ ,β ∗ l = sup x ∈ Ω | v l ( x ) | β ∗ l , | · | β ∗ l dual norm Infimal convolution TGV: [Holler/Kunisch ’14] ICTGV k β = TGV k 1 β 1 � . . . � TGV k m β m Regularization properties: Each TGV k i β i has finite-dimensional kernel + embedding � � � u � 1 + TGV k i � u � BV ≤ C β i ( u ) � ICTGV is a regularizer ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 24 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Accelerated dynamic MRI Joint work with Martin Holler and Matthias Schl¨ ogl Dynamic MRI: Acquire image sequences of moving objects Due to limited acquisition speed, only low-resolution images are obtainable sum of squares ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 25 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Accelerated dynamic MRI Joint work with Martin Holler and Matthias Schl¨ ogl Dynamic MRI: Acquire image sequences of moving objects Due to limited acquisition speed, only low-resolution images are obtainable sum of squares ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 25 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Accelerated dynamic MRI Joint work with Martin Holler and Matthias Schl¨ ogl Dynamic MRI: Acquire image sequences of moving objects Due to limited acquisition speed, only low-resolution images are obtainable sum of squares Goal: Improve spatio-temporal resolution by undersampling reconstruction ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 25 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Accelerated dynamic MRI Joint work with Martin Holler and Matthias Schl¨ ogl Dynamic MRI: Acquire image sequences of moving objects Due to limited acquisition speed, only low-resolution images are obtainable sum of squares Goal: Improve spatio-temporal resolution by undersampling reconstruction � Apply ICTGV regularized regularization ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 25 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING The variational model Minimization problem: λ � 2 � K t , c ( u t ) − d t , c � 2 2 + ICTGV 2 min β ( u ) u t , c K t , c ( u t ) = M t F ( u t σ c ) masked Fourier transform ( σ c complex coil sensitivities) ICTGV 2 β = TGV 2 β 1 � TGV 2 β 2 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 26 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING The variational model Minimization problem: λ � 2 � K t , c ( u t ) − d t , c � 2 2 + ICTGV 2 min β ( u ) u t , c K t , c ( u t ) = M t F ( u t σ c ) masked Fourier transform ( σ c complex coil sensitivities) ICTGV 2 β = TGV 2 β 1 � TGV 2 β 2 Primal-dual algorithm: Guaranteed convergence, duality-based stopping criterion GPU-optimized version: ≈ 160 seconds including coil-sensitivity estimation (NVidia GeForce GTX770 with AGILE library) ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 26 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: Reference data Unregularized reconstruction ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: Reference data Unregularized reconstruction ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: Low rank + sparse model Difference ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: ICTGV model Difference ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 16: ICTGV model Difference ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: Slow component Fast component ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Numerical test Acceleration factor 8: Slow component Fast component Favorable quantitative comparison 2nd place at the ISMRM 2013 reconstruction challenge ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 27 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Outline 1 Infimal convolution regularization 2 Total generalized variation Definition and properties Applications 3 Infimal convolution TGV Accelerated dynamic MRI 4 Infimal convolution of oscillation TGV Oscillation TGV and infimal convolution Numerical realization Applications 5 Summary ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 28 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Motivation: Denoising “barbara” noisy image ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 29 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Motivation: Denoising “barbara” TGV 2 α regularization ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 29 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Motivation: Denoising “barbara” TGV 2 α regularization � Capture oscillatory structures � TGV osci α,β, c ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 29 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions R d , ω � = 0 ∇ 2 u + c u = 0 , c = ω ⊗ ω, ω ∈ I Solutions: u ( x ) = C 1 cos( ω · x ) + C 2 sin( ω · x ) , C 1 , C 2 ∈ I R ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions R d , ω � = 0 ∇ 2 u + c u = 0 , c = ω ⊗ ω, ω ∈ I Solutions: u ( x ) = C 1 cos( ω · x ) + C 2 sin( ω · x ) , C 1 , C 2 ∈ I R Adapt second-order TGV to the corresponding operator ∇ 2 u + c u = 0 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions ∇ 2 u + c u = 0 , R d , ω � = 0 c = ω ⊗ ω, ω ∈ I Solutions: u ( x ) = C 1 cos( ω · x ) + C 2 sin( ω · x ) , C 1 , C 2 ∈ I R Adapt second-order TGV to the corresponding operator ∇ u − w = 0 , E w + c u = 0 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions ∇ 2 u + c u = 0 , R d , ω � = 0 c = ω ⊗ ω, ω ∈ I Solutions: u ( x ) = C 1 cos( ω · x ) + C 2 sin( ω · x ) , C 1 , C 2 ∈ I R Adapt second-order TGV to the corresponding operator ∇ u − w = 0 , E w + c u = 0 Total generalized variation (second order): � � TGV 2 α,β ( u ) = w ∈ BD(Ω) α min d |∇ u − w | + β d |E w | Ω Ω α > 0, β > 0 ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Oscillation TGV Joint work with Yiming Gao Idea: Choose differential equation with oscillatory functions as solutions ∇ 2 u + c u = 0 , R d , ω � = 0 c = ω ⊗ ω, ω ∈ I Solutions: u ( x ) = C 1 cos( ω · x ) + C 2 sin( ω · x ) , C 1 , C 2 ∈ I R Adapt second-order TGV to the corresponding operator ∇ u − w = 0 , E w + c u = 0 Oscillation total generalized variation: � � TGV osci α,β, c ( u ) = w ∈ BD(Ω) α min d |∇ u − w | + β d |E w + c u | Ω Ω R d , ω � = 0 α > 0, β > 0, c = ω ⊗ ω, ω ∈ I ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 30 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces Advanced properties: BGV osci α,β, c (Ω) = BV(Ω) in the sense of equivalent norms TGV osci α,β, c is coercive in the sense � u − Pu � BV ≤ C TGV osci α,β, c ( u ) for P : L 1 (Ω) → ker(TGV osci α,β, c ) continuous projection ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Properties of TGV osci α,β, c Basic properties: [Gao/B. ’17] TGV osci α,β, c is proper, convex, lower semi-continuous TGV osci α,β, c is translation and rotation invariant TGV osci α,β, c + � · � 1 gives the Banach space BGV osci α,β, c (Ω) ker(TGV osci α,β, c ) = span { x �→ cos( ω · x ) , x �→ sin( ω · x ) } TGV osci α,β, c measures piecewise oscillations only at interfaces Advanced properties: BGV osci α,β, c (Ω) = BV(Ω) in the sense of equivalent norms TGV osci α,β, c is coercive in the sense � u − Pu � BV ≤ C TGV osci α,β, c ( u ) for P : L 1 (Ω) → ker(TGV osci α,β, c ) continuous projection ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 31 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution of TGV osci Next steps: Separate cartoon components from oscillatory components Allow for multiple directions and frequencies � m -fold infimal convolution ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 32 / 51
INSTITUTE FOR MATHEMATICS AND SCIENTIFIC COMPUTING Infimal convolution of TGV osci Next steps: Separate cartoon components from oscillatory components Allow for multiple directions and frequencies � m -fold infimal convolution Infimal convolution of TGV osci : ICTGV osci c ( u ) = (TGV osci α 1 ,β 1 , c 1 � . . . � TGV osci α m ,β m , c m )( u ) α,� � β,� R d α i > 0, β i > 0, c i = ω i ⊗ ω i , ω i ∈ I ICTGV osci Infimal convolution TGV ICTGV Summary K. Bredies 32 / 51
Recommend
More recommend