inferring heterogeneous causal effects in presence of
play

Inferring Heterogeneous Causal Effects in Presence of Spatial - PowerPoint PPT Presentation

Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding ICML, 2019 Muhammad Osama, Dave Zachariah, Thomas B. Sch on Division of System and Control, Department of Information Technology, Uppsala University 1 / 9


  1. Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding ICML, 2019 Muhammad Osama, Dave Zachariah, Thomas B. Sch¨ on Division of System and Control, Department of Information Technology, Uppsala University 1 / 9 muhammad.osama@it.uu.se

  2. Causal inference problem ◮ y ∈ R : Outcome of interest 2 / 9 muhammad.osama@it.uu.se

  3. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable 2 / 9 muhammad.osama@it.uu.se

  4. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n 2 / 9 muhammad.osama@it.uu.se

  5. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n ◮ Target quantity: Average effect of assigning z = � z on y at location s 2 / 9 muhammad.osama@it.uu.se

  6. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n ◮ Target quantity: Average effect of assigning z = � z on y at location s � � d τ = z E y ( � z ) | s (1) d � 2 / 9 muhammad.osama@it.uu.se

  7. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n ◮ Target quantity: Average effect of assigning z = � z on y at location s � � d τ = z E y ( � z ) | s (1) d � y = income z = age 2 / 9 muhammad.osama@it.uu.se

  8. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n ◮ Target quantity: Average effect of assigning z = � z on y at location s � � d τ = z E y ( � z ) | s (1) d � ◮ c : Unobserved confounding variables y = income z = age 2 / 9 muhammad.osama@it.uu.se

  9. Causal inference problem ◮ y ∈ R : Outcome of interest ◮ z ∈ R : Exposure variable i =1 , where s ∈ R d is spatial location ◮ D n = { y i , z i , s i } n ◮ Target quantity: Average effect of assigning z = � z on y at location s � � d τ = z E y ( � z ) | s (1) d � ◮ c : Unobserved confounding variables y = income z = age c = unemployment 2 / 9 muhammad.osama@it.uu.se

  10. Causal Inference Problem 3 c 2 1 s 0 -1 -2 -3 z y -5 0 5 Example: Here τ = 0 yet Cov( z, y ) � = 0 . 3 / 9 muhammad.osama@it.uu.se

  11. Approach ◮ Assumptions: 4 / 9 muhammad.osama@it.uu.se

  12. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s 4 / 9 muhammad.osama@it.uu.se

  13. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z 4 / 9 muhammad.osama@it.uu.se

  14. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z y = τ ( s ) z + β ( s ) + ǫ (2) 4 / 9 muhammad.osama@it.uu.se

  15. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z y = τ ( s ) z + β ( s ) + ǫ (2) ◮ β ( s ) is a nuisance function correlated with spatially varying exposure z . 4 / 9 muhammad.osama@it.uu.se

  16. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z y = τ ( s ) z + β ( s ) + ǫ (2) ◮ β ( s ) is a nuisance function correlated with spatially varying exposure z . 10 1 8 0.5 6 0 4 -0.5 2 0 -1 0 2 4 6 8 10 τ ( s ) 4 / 9 muhammad.osama@it.uu.se

  17. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z y = τ ( s ) z + β ( s ) + ǫ (2) ◮ β ( s ) is a nuisance function correlated with spatially varying exposure z . 10 1 10 1 8 8 0.5 0.5 6 6 0 0 4 4 -0.5 -0.5 2 2 0 -1 0 -1 0 2 4 6 8 10 0 2 4 6 8 10 τ ( s ) τ ( s ) via (2) � 4 / 9 muhammad.osama@it.uu.se

  18. Approach ◮ Assumptions: � � � � ◮ E = E y ( � z ) | s y | z = � z, s � � ◮ E y | z = � z, s is affine in z y = τ ( s ) z + β ( s ) + ǫ (2) ◮ β ( s ) is a nuisance function correlated with spatially varying exposure z . 10 1 10 1 10 1 8 8 8 0.5 0.5 0.5 6 6 6 0 0 0 4 4 4 -0.5 -0.5 -0.5 2 2 2 0 -1 0 -1 0 -1 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 τ ( s ) τ ( s ) via (2) � � τ ( s ) proposed 4 / 9 muhammad.osama@it.uu.se

  19. Error-in-variables model � � � � ◮ Let w = y − E and v = z − E y | s z | s [1] 5 / 9 muhammad.osama@it.uu.se

  20. Error-in-variables model � � � � ◮ Let w = y − E and v = z − E y | s z | s [1] ◮ (2) becomes w = τ ( s ) v + ǫ (3) 5 / 9 muhammad.osama@it.uu.se

  21. Error-in-variables model � � � � ◮ Let w = y − E and v = z − E y | s z | s [1] ◮ (2) becomes w = τ ( s ) v + ǫ (3) ◮ The effect τ ( s ) is directly identifiable from (3) which we parameterize as τ θ ( s ) ∈ { f ( s ) : f = φ ( s ) ⊤ θ } , 5 / 9 muhammad.osama@it.uu.se

  22. Error-in-variables model � � � � ◮ Let w = y − E and v = z − E y | s z | s [1] ◮ (2) becomes w = τ ( s ) v + ǫ (3) ◮ The effect τ ( s ) is directly identifiable from (3) which we parameterize as τ θ ( s ) ∈ { f ( s ) : f = φ ( s ) ⊤ θ } , ◮ Residuals w and v are not observed but estimated so that � � � � � y − � w = E [ y | s ] + E [ y | s ] − E [ y | s ] , � �� � � �� � w � w � � � � � � z − � v = E [ z | s ] + E [ z | s ] − E [ z | s ] , � �� � � �� � � � v v where � w and � v denote errors 5 / 9 muhammad.osama@it.uu.se

  23. Proposed robust method ◮ Then (3) becomes � � ⊤ θ + � w = � � v φ ( s ) + δ ( s ) ǫ where δ ( s ) = � v φ ( s ) is an unobserved random deviation 6 / 9 muhammad.osama@it.uu.se

  24. Proposed robust method ◮ Then (3) becomes � � ⊤ θ + � w = � � v φ ( s ) + δ ( s ) ǫ where δ ( s ) = � v φ ( s ) is an unobserved random deviation ◮ Robust estimator with tolerance against worst-case deviation δ ( s ) � � � �� � θ = arg min max E n | � w − ( � v φ ( s ) + δ ) ⊤ θ | 2 (4) δ ∈ ∆ θ 6 / 9 muhammad.osama@it.uu.se

  25. Proposed robust method ◮ Then (3) becomes � � ⊤ θ + � w = � � v φ ( s ) + δ ( s ) ǫ where δ ( s ) = � v φ ( s ) is an unobserved random deviation ◮ Robust estimator with tolerance against worst-case deviation δ ( s ) � � � �� � θ = arg min max E n | � w − ( � v φ ( s ) + δ ) ⊤ θ | 2 (4) δ ∈ ∆ θ where � � | δ k | 2 � � vφ k ( s ) | 2 � � ≤ n − 1 E n ∆ = δ : E n | � , ∀ k 6 / 9 muhammad.osama@it.uu.se

  26. Proposed robust method ◮ Then (3) becomes � � ⊤ θ + � w = � � v φ ( s ) + δ ( s ) ǫ where δ ( s ) = � v φ ( s ) is an unobserved random deviation ◮ Robust estimator with tolerance against worst-case deviation δ ( s ) � � � �� � θ = arg min max E n | � w − ( � v φ ( s ) + δ ) ⊤ θ | 2 (4) δ ∈ ∆ θ where � � | δ k | 2 � � vφ k ( s ) | 2 � � ≤ n − 1 E n ∆ = δ : E n | � , ∀ k ◮ (4) is a convex problem and can be solved using coordinate descent. 6 / 9 muhammad.osama@it.uu.se

  27. Real data ◮ y : Number of crimes, z : number of poor families across states s = { 1 , . . . , 50 } 7 / 9 muhammad.osama@it.uu.se

  28. Real data ◮ y : Number of crimes, z : number of poor families across states s = { 1 , . . . , 50 } 0.40 Significant Insignificant [Effect estimate of poverty on crime] 0.35 0.30 0.25 0.20 (a) Estimate � τ ( s ) (b) Significance at 5% level ◮ Results consistent with previous findings [2] 7 / 9 muhammad.osama@it.uu.se

  29. Conclusion ◮ We propose an orthogonalization-based strategy for estimating heterogeneous effects from spatial data in presence of spatially varying confounding variables ◮ Our proposed method is robust to errors-in-variables ◮ Visit poster # 80 at Pacific Ballroom 6 . 30 pm − 9 pm 8 / 9 muhammad.osama@it.uu.se

  30. References Chernozukhov et al., Double machine learning for treatment and causal parameters , cemmap working paper, Centre for Microdata Methods and Practice, 2016. Ellis et al., Crime, delinquency, and social status: A reconsideration , Journal of Offender Rehabilitation, 2001. 9 / 9 muhammad.osama@it.uu.se

Recommend


More recommend