independence conditional distributions so far density of
play

Independence, conditional distributions So far density of X specified - PDF document

Independence, conditional distributions So far density of X specified explicitly. Often modelling leads to a specification in terms of marginal and conditional distributions. Defn : Events A and B are independent if P ( AB ) = P ( A ) P ( B ) .


  1. Independence, conditional distributions So far density of X specified explicitly. Often modelling leads to a specification in terms of marginal and conditional distributions. Def’n : Events A and B are independent if P ( AB ) = P ( A ) P ( B ) . (Notation: AB is the event that both A and B happen, also written A ∩ B .) Def’n : A i , i = 1 , . . . , p are independent if r � P ( A i 1 · · · A i r ) = P ( A i j ) j =1 for any 1 ≤ i 1 < · · · < i r ≤ p . Example : p = 3 P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ) P ( A 3 ) P ( A 1 A 2 ) = P ( A 1 ) P ( A 2 ) P ( A 1 A 3 ) = P ( A 1 ) P ( A 3 ) P ( A 2 A 3 ) = P ( A 2 ) P ( A 3 ) . All these equations needed for independence! 29

  2. Example : Toss a coin twice. A 1 = { first toss is a Head } A 2 = { second toss is a Head } A 3 = { first toss and second toss different } Then P ( A i ) = 1 / 2 for each i and for i � = j P ( A i ∩ A j ) = 1 4 but P ( A 1 ∩ A 2 ∩ A 3 ) = 0 � = P ( A 1 ) P ( A 2 ) P ( A 3 ) . Def’n : X and Y are independent if P ( X ∈ A ; Y ∈ B ) = P ( X ∈ A ) P ( Y ∈ B ) for all A and B . Def’n : Rvs X 1 , . . . , X p independent : � P ( X 1 ∈ A 1 , . . . , X p ∈ A p ) = P ( X i ∈ A i ) for any A 1 , . . . , A p . 30

  3. Theorem : 1. If X and Y are independent then for all x, y F X,Y ( x, y ) = F X ( x ) F Y ( y ) . 2. If X, Y independent, joint density f X,Y then X , Y have densities f X , f Y , and f X,Y ( x, y ) = f X ( x ) f Y ( y ) . 3. If X, Y independent, marginal densities f X , f Y then ( X, Y ) has joint density f X,Y ( x, y ) = f X ( x ) f Y ( y ) . 4. If F X,Y ( x, y ) = F X ( x ) F Y ( y ) for all x, y then X and Y are independent. 5. If ( X, Y ) has density f ( x, y ) and there ex- ist g ( x ) and h ( y ) st f ( x, y ) = g ( x ) h ( y ) for (almost) all ( x, y ) then X and Y are inde- pendent with densities given by � ∞ f X ( x ) = g ( x ) / −∞ g ( u ) du � ∞ f Y ( y ) = h ( y ) / −∞ h ( u ) du . Theorem : If X 1 , . . . , X p are independent and Y i = g i ( X i ) then Y 1 , . . . , Y p are independent. Moreover, ( X 1 , . . . , X q ) and ( X q +1 , . . . , X p ) are independent. 31

  4. Conditional probability Def’n : P ( A | B ) = P ( AB ) /P ( B ) if P ( B ) � = 0. Def’n : For discrete X and Y the conditional probability mass function of Y given X is f Y | X ( y | x ) = P ( Y = y | X = x ) = f X,Y ( x, y ) /f X ( x ) � = f X,Y ( x, y ) / f X,Y ( x, t ) t For absolutely continuous X P ( X = x ) = 0 for all x . What is P ( A | X = x ) or f Y | X ( y | x )? Solution: use limit P ( A | X = x ) = lim δx → 0 P ( A | x ≤ X ≤ x + δx ) If, e.g., X, Y have joint density f X,Y then with A = { Y ≤ y } we have P ( A | x ≤ X ≤ x + δx ) = P ( A ∩ { x ≤ X ≤ x + δx } ) P ( x ≤ X ≤ x + δx ) � y � x + δx f X,Y ( u, v ) dudv −∞ x = � x + δx f X ( u ) du x 32

  5. Divide top, bottom by δx ; let δx → 0. Denom converges to f X ( x ); numerator converges to � y −∞ f X,Y ( x, v ) dv Define conditional cdf of Y given X = x : � y −∞ f X,Y ( x, v ) dv P ( Y ≤ y | X = x ) = f X ( x ) Differentiate wrt y to get def’n of conditional density of Y given X = x : f Y | X ( y | x ) = f X,Y ( x, y ) /f X ( x ) ; in words “conditional = joint/marginal”. 33

Recommend


More recommend