incremental event calculus for run time reasoning
play

Incremental Event Calculus for Run-Time Reasoning Efthimis - PowerPoint PPT Presentation

Incremental Event Calculus for Run-Time Reasoning Efthimis Tsilionis, Alexander Artikis, Georgios Paliouras NCSR Demokritos http://cer.iit.demokritos.gr/ 16 April 2019 Motivation for Incremental CER Motivation for Incremental CER Delayed


  1. Incremental Event Calculus for Run-Time Reasoning Efthimis Tsilionis, Alexander Artikis, Georgios Paliouras NCSR Demokritos http://cer.iit.demokritos.gr/ 16 April 2019

  2. Motivation for Incremental CER

  3. Motivation for Incremental CER ◮ Delayed events (e.g., satelite GPS messages)

  4. Motivation for Incremental CER ◮ Delayed events (e.g., satelite GPS messages) ◮ Overlapping temporal windows

  5. Motivation for Incremental CER ◮ Propagation of changes anchoredOrMoored loitering stopped rendezVous withinArea pilotBoarding lowSpeed gap tuggingSpeed tugging highSpeedNC sarSpeed sar sarMovement trawlSpeed changingSpeed movingSpeed underWay drifting trawlingMovement trawling

  6. Event Calculus ◮ A logic programming language for representing and reasoning about events and their effects.

  7. Event Calculus ◮ A logic programming language for representing and reasoning about events and their effects. ◮ Key components: ◮ event (typically instantaneous). ◮ fluent: a property that may have different values at different points in time.

  8. Event Calculus ◮ A logic programming language for representing and reasoning about events and their effects. ◮ Key components: ◮ event (typically instantaneous). ◮ fluent: a property that may have different values at different points in time. ◮ Built-in representation of inertia: ◮ F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

  9. Event Calculus ◮ A logic programming language for representing and reasoning about events and their effects. ◮ Key components: ◮ event (typically instantaneous). ◮ fluent: a property that may have different values at different points in time. ◮ Built-in representation of inertia: ◮ F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime. ◮ RTEC is a CER system based on the Event Calculus formalism

  10. Problem Statement initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1

  11. Problem Statement initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  12. Problem Statement initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  13. Problem Statement initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  14. Problem Statement: Inefficiency initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  15. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  16. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  17. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  18. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  19. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  20. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  21. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  22. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  23. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  24. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  25. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i

  26. Incremental RTEC initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 Q i = s F Q i-1 + Δ s F ( Q i-1 , { ins , del } ) s F initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i - ω q i-1 q i ◮ Two phases: ◮ Deletion phase ◮ Addition phase

  27. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1

  28. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 ω time q i - ω q i-1 q i

  29. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 [ initiatedAt( F=V,T ) ] Q i-1 ← ω [ happensAt( A,T ) ] del v [ holdsAt( B=V B ,T ) ] del v [ happensAt( C,T ) ] ins v [ holdsAt( D=V D ,T ) ] ins . time q i - ω q i-1 q i

  30. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 [ initiatedAt( F=V,T ) ] Q i-1 ← ω [ happensAt( A,T ) ] del v [ holdsAt( B=V B ,T ) ] del v [ happensAt( C,T ) ] ins v [ holdsAt( D=V D ,T ) ] ins . time q i - ω q i-1 q i

  31. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 [ initiatedAt( F=V,T ) ] Q i-1 ← ω [ happensAt( A,T ) ] del v [ holdsAt( B=V B ,T ) ] del v [ happensAt( C,T ) ] ins v [ holdsAt( D=V D ,T ) ] ins . time q i - ω q i-1 q i

  32. Incremental RTEC - Deletion phase initiatedAt( F=V,T ) ← ω happensAt( A,T ), holdsAt( B=V B ,T ), not happensAt( C,T ), not holdsAt( D=V D ,T ). time q i-1 - ω q i-1 [ initiatedAt( F=V,T ) ] Q i-1 ← ω [ happensAt( A,T ) ] del v [ holdsAt( B=V B ,T ) ] del v [ happensAt( C,T ) ] ins v [ holdsAt( D=V D ,T ) ] ins . time q i - ω q i-1 q i

  33. Incremental RTEC - Addition phase ω time q i - ω q i-1 q i

Recommend


More recommend