Inconsistency Measurement based on Variables in Minimal Unsatisfiable Subsets Guohui Xiao Yue Ma Institute of Informatics, Vienna University of Technology Theoretical Computer Science, Dresden University of Technology ECAI 2012 — August 30, 2012
Overview Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6
Outline Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 2 / 31
Background Consistent KBs are useful, but inconsistent KBs imply any conclusion (meaningless!) Inconsistency measurement: from “is inconsistent” to “how inconsistent” Ideas and approaches: ◮ based on different views of atomicity of inconsistency ◮ Semantics based approaches ◮ Syntax based approaches ◮ Semantics - syntax combined approaches (this paper) G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 3 / 31
Outline Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 4 / 31
Inconsistency Measurement by Multi-valued Semantics G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 5 / 31
Inconsistency Measurement by Multi-valued Semantics Multi-Valued Semantics ◮ 4-valued, 3-valued, LP m , Quasi-Classical, . . . ◮ I : Var ( K ) → { t , f , Both , None } G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 5 / 31
Inconsistency Measurement by Multi-valued Semantics Multi-Valued Semantics ◮ 4-valued, 3-valued, LP m , Quasi-Classical, . . . ◮ I : Var ( K ) → { t , f , Both , None } ID of K respect to I under i -semantics ( i = 3 , 4 , LP m , Q ) ID i ( K , I ) = |{ p | p I = B , p ∈ Var ( K ) }| , if I | = i K | Var ( K ) | G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 5 / 31
Inconsistency Measurement by Multi-valued Semantics Multi-Valued Semantics ◮ 4-valued, 3-valued, LP m , Quasi-Classical, . . . ◮ I : Var ( K ) → { t , f , Both , None } ID of K respect to I under i -semantics ( i = 3 , 4 , LP m , Q ) ID i ( K , I ) = |{ p | p I = B , p ∈ Var ( K ) }| , if I | = i K | Var ( K ) | ID of K under under i -semantics ( i = 3 , 4 , LP m , Q ) ID i ( K ) = min = i K ID i ( K , I ) I | G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 5 / 31
Inconsistency Degree under 4-valued Semantics ID 4 ( K , I ) = |{ p | p I = B , p ∈ Var ( K ) }| Truth values: { t , f , B , N } | Var ( K ) | 4-model I : ID 4 ( K ) = min I | = 4 K ID 4 ( K ), K → { t , B } � K = { p , ¬ q , ¬ p ∨ q , r ∨ s } � I 1 : p I 1 = B , q I 1 = f , r I 1 = t , s I 1 = t , I 2 : p I 2 = B , q I 2 = B , r I 2 = t , s I 2 = t I 3 : p I 3 = B , q I 3 = B , r I 3 = t , s I 3 = N � ID 4 ( K , I 1 ) = 1 4 , ID 4 ( K , I 2 ) = 2 4 ID 4 ( K , I 3 ) = 2 4 Figure : Four-Valued Logic ID 4 ( K ) = 1 4 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 6 / 31
Inconsistency Degree under Quasi-Classical Semantics ID Q ( K , I ) = |{ p | p I = B , p ∈ Var ( K ) }| | Var ( K ) | ID Q ( K ) = min I | = Q K ID Q ( K ), Quasi-Classical (Q) interpretation: � K = { p , ¬ q , ¬ p ∨ q , r ∨ s } 4-valued interpretation I 1 : p I 1 = B , q I 1 = f , r I 1 = t , s I 1 = t � ———————————————- Resolution laws are I 2 : p I 2 = B , q I 2 = B , r I 2 = t , s I 2 = t satisfied I 3 : p I 3 = B , q I 3 = B , r I 3 = t , s I 3 = N I | = Q α ∨ β, I | = Q ¬ β ∨ γ ID Q ( K , I 1 ) = 1 4 , ID Q ( K , I 2 ) = 2 � ——————– 4 ⇒ I | = Q α ∨ γ ID Q ( K , I 3 ) = 2 4 ID Q ( K ) = 2 4 Remark: ID 4 ( K ) = ID 3 ( K ) = ID LPm ( K ) ≤ ID Q ( K ) [Xiao et al., 2010] G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 7 / 31
MUS and MCS Definition A subset U ⊆ K is an Minimal Unsatisfiable Subset (MUS), if U is unsatisfiable and ∀ C i ∈ U , U \ { C i } is satisfiable. Definition A subset M ⊆ K is an Minimal Correction Subset (MCS), if K \ M is satisfiable and ∀ C i ∈ M , K \ ( M \ { C i } ) is unsatisfiable. Example Let K = { p , ¬ p , p ∨ q , ¬ q , ¬ p ∨ r } . Then MUSes ( K ) = {{ p , ¬ p } , {¬ p , p ∨ q , ¬ q }} and MCSes ( K ) = {{¬ p } , { p , p ∨ q } , { p , ¬ q }} . G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 8 / 31
Inconsistency Measurement by MUSes and MCSes [Hunter and Konieczny, 2008] The MI inconsistency measure is defined as the numbers of minimal inconsistent sets of K : I MI ( K ) = | MUSes ( K ) | . (minimal inconsistent sets = minimal unsatisfiable subsets) Example Let K = { p , ¬ p , p ∨ q , ¬ q , ¬ p ∨ r } . MUSes ( K ) = {{ p , ¬ p } , {¬ p , p ∨ q , ¬ q }} I MI ( K ) = 2 Note that I MI ( K ) can be exponentially large G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 9 / 31
Why another Inconsistency Measurement? Combination of Semantics and Syntax based IDs ◮ Shapley inconsistency measures [Hunter and Konieczny, 2006]: distribution of ID { 4 , Q ,... } among different formulas ◮ Ours: combination of semantics and syntax based IDs in the KB level Expected properties: ◮ Easier to compute than I MI : ⋆ I MI tends to be difficult to compute or approximate because of exponentially many MUSes ◮ More intuitive: ⋆ For K = { a ∧ ¬ a } and K ′ = { a ∧ ¬ a ∧ b ∧ ¬ b } , we have I MI ( K ) = I MI ( K ′ ) = 1, which is unintuitive ⋆ Later we see ID 4 tends to be “small”, while ID Q tends to be “large” G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 10 / 31
Outline Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 11 / 31
Inconsistency Measurement by Variables in MUSes Definition For a given set of variables S and a given knowledge base K such that Var ( K ) ⊆ S , its MUS-variable based inconsistency degree, written ID MUS ( K ), is defined as: ID MUS ( K ) = | Var ( MUSes ( K )) | . | S | Example Let K = { p , ¬ p , p ∨ q , ¬ q , ¬ p ∨ r } and S = Var ( K ) = { p , q , r } , MUSes ( K ) = {{ p , ¬ p } , {¬ p , p ∨ q , ¬ q }} . Then ID MUS ( K ) = 2 / 3. Example For K = { a ∧ ¬ a } and K ′ = { a ∧ ¬ a ∧ b ∧ ¬ b } , let S = Var ( K ) ∪ Var ( K ′ ) = { a , b } . Then we have MUSes ( K ) = {{ a ∧ ¬ a }} and MUSes ( K ′ ) = {{ a ∧ ¬ a ∧ b ∧ ¬ b }} , ID MUS ( K ) = 1 / 2 and ID MUS ( K ′ ) = 1. So under ID MUS , K ′ is more inconsistent than K . G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 12 / 31
Inconsistency Measurement by Variables in MCSes Similarly to ID MUS ( K ), we can define another inconsistency degree through MCS as follows: Definition For a given set of variables S and a given knowledge base K such that Var ( K ) ⊆ S , its MCS-variable based inconsistency degree, written ID MCS ( K ), is defined as follows: ID MCS ( K ) = | Var ( MCSes ( K )) | . | S | Example Let K = { p , ¬ p , p ∨ q , ¬ q , ¬ p ∨ r } and S = Var ( K ), MCSes ( K ) = {{¬ p } , { p , p ∨ q } , { p , ¬ q }} , then ID MCS ( K ) = 2 / 3. G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 13 / 31
ID MUS = ID MCS MUSes ( K ) and MCSes ( K ) are hitting sets dual of each other [Liffiton and Sakallah, 2008] ⇒ � MUSes ( K ) = � MCSes ( K ) ⇒ Var ( � MUSes ( K )) = Var ( � MCSes ( K )) ⇒ ID MUS ( K ) = ID MCS ( K ) In the rest of the talk, the discussion is only about ID MUS ( K ), G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 14 / 31
ID 4 and ID MUS Corollary Let U be an MUS, then ID 4 ( U ) = 1 / | Var ( U ) | . The following theorem shows that ID 4 ( K ) can be determined by the cardinality minimal hitting sets of MUSes ( K ). Theorem For a given KB K, ID 4 ( K ) = min H {| H | | ∀ U ∈ MUSes ( K ) , Var ( U ) ∩ H � = ∅} . | Var ( K ) | Corollary ID MUS ( K ) ≥ ID 4 ( K ) . G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 15 / 31
ID Q and ID MUS Lemma Let U be an MUS, then U has only one Q-model which assigns B to all of its variables. Hence ID Q ( U ) = 1 . Proposition Let K be a KB and I ∈ PM Q ( K ) , then Conflict ( I , K ) ⊇ Var ( MUSes ( K )) . Corollary Let K be a KB, then ID Q ( K ) ≥ ID MUS ( K ) . G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 16 / 31
Outline Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 17 / 31
Complexity Results ID-MUS ≥ k : Given a CNF KB, and a number k , deciding ID MUS ( K ) ≥ k . ID-MUS : Functional complexity of computing ID MUS Problem Complexity Σ p 2 -complete ID-MUS ≥ k Π p ID-MUS ≤ k 2 -complete D p 2 -complete ID-MUS = k FP Σ p 2 [log] ID-MUS Table : Complexity Results All the results are in the second layer of polynomial hierarchy Recall that ID 4 and ID Q are in first layer G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 18 / 31
Outline Motivation 1 Preliminaries 2 Inconsistency Measurement by Variables in MUSes 3 Computational Complexities 4 Experiments 5 Summary 6 G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012 19 / 31
Recommend
More recommend