impact of terrestrial ecosystems of russia on the global
play

Impact of Terrestrial Ecosystems of Russia on the Global Carbon - PowerPoint PPT Presentation

ENVIROMIS-2010, 5-11 July 2010, Tomsk, Russia Impact of Terrestrial Ecosystems of Russia on the Global Carbon Cycle for 2003-2008: An Attempt of Synthesis A. Shvidenko, D. Schepaschenko, S. Maksyutov, IIASA (Laxenburg, Austria), Institute of


  1. ENVIROMIS-2010, 5-11 July 2010, Tomsk, Russia Impact of Terrestrial Ecosystems of Russia on the Global Carbon Cycle for 2003-2008: An Attempt of Synthesis A. Shvidenko, D. Schepaschenko, S. Maksyutov, IIASA (Laxenburg, Austria), Institute of Forest SB RAS (Krasnoyarsk, Russia), Moscow State University of Forest (Russia), NIES (Tsukuba, Japan)

  2. Prerequisites • Post Kyoto developments versus Terrestrial Ecosystems Full Carbon Account (FCA) • High variability of reported results of estimation • High and mostly unknown uncertainty • Could the uncertainty of the FCA be made acceptable for policy makers?

  3. Need of Terrestrial Biota Verified Full Greenhouse Gas Account • Key words: Full, Verified, Uncertainty • Full: ALL ecosystems, ALL land classes and ALL processes – spatially explicit and continuously in time • Verified: (1) reliable and comprehensive assessment of uncertainties; (2) possibility to manage uncertainties up to an acceptable level • Uncertainty is an aggregation of insufficiencies of outputs of the accounting system, regardless of whether those insufficiencies result from a lack of knowledge, intricacy of the system, or other causes • Need of synthesis: what is current state of knowledge of terrestrial ecosystems carbon accounting?

  4. Major principles of the FCA: Integration, harmonization and multiple constraints Terrestrial Biota Full Carbon Account is a dynamic very complicated open stochastic fuzzy system (... full complexity problem) The direct verification of results of FCA is not possible Structural uncertainty cannot be reliably recognized within any individually used method Landscape-ecosystem approach Process-based models Flux measurements Multi-sensor remote sensing concept Inverse modelling

  5. IIASA ¡landscape-­‑ecosystem ¡approach: ¡a ¡semi-­‑ empirical ¡background ¡of ¡FCA ¡ • As ¡comprehensive ¡as ¡possible ¡following ¡the ¡requirements ¡of ¡ the ¡applied ¡systems ¡analysis ¡ ¡ • Relevant ¡combina;on ¡of ¡flux-­‑ ¡and ¡pool-­‑based ¡approaches ¡ • Strict ¡mono-­‑seman;c ¡defini;ons ¡and ¡proper ¡classifica;on ¡ schemes; ¡harmoniza;on ¡of ¡these ¡with ¡other ¡approaches ¡ • Explicit ¡intra-­‑ ¡and ¡intersystem ¡structuring: ¡op;miza;on ¡of ¡ input ¡data; ¡explicit ¡algorithmic ¡form ¡of ¡accoun;ng ¡schemes, ¡ models ¡and ¡assump;ons ¡ • Spa;ally ¡and ¡temporally ¡explicit ¡distribu;on ¡of ¡pools ¡and ¡ fluxes ¡ • Correc;on ¡of ¡many ¡year ¡average ¡es;mates ¡for ¡environmental ¡ and ¡clima;c ¡indicators ¡of ¡individual ¡years ¡ • Assessment ¡of ¡uncertain;es ¡at ¡all ¡stages ¡and ¡for ¡all ¡modules ¡ of ¡the ¡account ¡– ¡intra-­‑approach ¡uncertainty ¡ • Compara;ve ¡analysis ¡with ¡independent ¡sources, ¡harmonizing ¡ and ¡mul;ple ¡constraints ¡of ¡the ¡intermediate ¡and ¡final ¡results ¡

  6. Structure of the Integrated Land Information System

  7. Multi-sensor remote sensing concept NDSWIR (1km pixel) Fire Scar Detail on Test Area Landsat 7 quicklook (30m pixel) Fire scar map on NDSWIR background • NOAA AVHRR • MODIS • GLC-2000 • MODIS-VCF • LANDSAT TM • ENVISAT MERIS • ENVISAT ASAR • JERS • ERS-1 and ERS-2 • ALOS PALSAR

  8. Biomass by radars Last results (Santoro et al. 2010) report possibility for assessing the growing stock up to 300-350 m3 with uncertainty of 10-15% Courtesy by C.Schmullius

  9. Hybrid land cover – a background of the Integrated Land Information System (1 km resolution) Method: Schepaschenko et al. 2010

  10. Results: carbon pools of terrestrial ecosystem (an example for 2005) Carbon stock, Pg C Soil 324.0 Incl surface organic layer 14.2 Area, mln ha Live biomass 42.1 Forests 794.7 Incl forest LB 34.5 Open woodland 82.6 Agricultural land 218.6 Dead wood in forest 8.6 incl arable land 109.2 Wetland 146.9 Soil / Biomass C Burnt area 27.5 in forest 3.5 : 1 G & Sh 300.8 Productive land 1571.4

  11. Reanalysis: Net primary production, Tg C yr -1 by vegetation classes and vegetation zone Tundra Sparse Middle Southern Temperate Land class Polar Steppe Desert Total taiga taiga taiga forest Forest 0.0 48.4 337.2 1,363.5 636.1 133.4 66.4 9.8 2,594.7 Arable 0.0 0.0 0.0 2.0 44.5 70.6 294.0 1.8 412.8 Hayfield 0.0 0.0 0.3 11.5 25.1 9.4 33.5 15.0 94.8 Pasture 0.0 0.2 0.6 20.1 29.7 22.7 128.2 86.1 287.6 Fallow 0.0 0.0 0.1 4.3 7.1 4.2 5.5 0.1 21.2 Abandoned 0.0 0.1 0.5 11.0 59.1 24.1 51.4 5.3 151.6 arable Wetland 0.0 53.4 76.7 113.4 63.1 7.6 68.2 12.6 395.0 Open 0.0 15.2 34.9 44.0 26.9 4.8 2.7 0.5 129.1 woodland Burnt area 0.0 2.7 4.4 40.0 3.8 0.4 0.8 0.1 52.2 Grass & 0.3 181.4 42.9 590.9 48.5 42.8 77.0 15.6 999.3 shrubland Total 0.3 301.4 497.6 2,200.7 944.0 320.0 727.7 146.7 5,138.3

  12. Net primary production, g C m -2 yr -1 by vegetation classes and vegetation zone Tundra Sparse Middle Southern Temperate Land class Polar Steppe Desert Total taiga taiga taiga forest - 231 241 291 431 508 445 442 318 Forest - 250 269 377 452 591 533 534 530 Arable 98 - 381 366 409 414 363 473 395 Hayfield - 313 304 316 382 374 383 605 422 Pasture - - 403 362 491 465 383 307 424 Fallow Abandoned - 344 421 520 516 542 485 459 507 arable 0 121 213 260 403 652 2031 1380 273 Wetland Open - 246 240 334 486 457 470 619 314 woodland 69 139 126 113 448 511 519 517 151 Burnt area Grass & 0 126 141 228 571 428 507 322 316 shrubland 60 126 214 322 444 537 521 572 323 Total

  13. An example of reanalysis: NPP of Russian forests (2009) based on a new empirical method Dominant species 7.4% 14.3% 3.7% 17.9% 12.1% 2.0% 3.6% 6.9% 32.1% NPP 2.59 Pg C yr -1 , or 318 g C ha -1 yr -1 Pine Spruce Fir Larch Cedar HWD Birch Aspen Ohters Uncertainty 7% (CI 0.9) Difference with a Age groups previous inventory ~1/3 10.6% 19.8% Components 27.9% 29.0% 30.4% 26.8% Method: 5.5% 12.4% Shvidenko et al., 6.3% 14.7% Young Middleaged Immature Mature Overmature Ecol. Model. 2007 16.6% Stem Branches Foliage Roots Understory GFF

  14. Heterotrophic respiration, Tg C yr -1 by vegetation classes and vegetation zone Tundra Sparse Middle Southern Temperate Land class Polar Steppe Desert Total taiga taiga taiga forest Forest - 24.9 185.9 870.2 404.3 95.0 49.7 6.9 1,637.0 Arable - 0.0 0.0 1.7 34.4 34.2 210.1 0.8 281.2 Hayfield 0.0 - 0.1 9.8 23.5 8.3 30.7 7.1 79.5 Pasture - 0.1 0.6 19.3 28.1 21.8 110.5 31.6 212.0 Fallow - - 0.1 3.5 5.5 3.1 4.5 0.1 16.7 Abandoned - 0.0 0.3 8.0 39.3 16.5 37.6 2.8 104.5 arable Bare fellow - - 0.0 0.3 4.2 6.2 37.8 0.6 49.2 Wetland 0.0 44.5 67.4 112.6 62.3 5.7 21.5 3.5 317.5 Open - 10.9 31.8 48.5 19.0 3.2 2.3 0.4 116.0 woodland Burnt area - 2.0 3.3 30.0 2.6 0.3 0.6 0.1 38.9 Grass & 0.2 175.5 40.0 272.1 33.0 23.3 58.1 9.1 611.4 shrubland Total 0.2 258.0 329.5 1,376.1 656.0 217.7 563.4 63.0 3,463.8

  15. Heterotrophic respiration, g C m -2 by vegetation classes and vegetation zone Tundra Sparse Middle Southern Temperate Land class Polar Steppe Desert Total taiga taiga taiga forest - 121 132 185 274 359 333 318 199 Forest - 128 191 322 349 286 380 242 361 Arable 42 - 190 311 381 366 333 224 331 Hayfield - 186 277 304 361 359 330 222 311 Pasture - - 276 300 378 352 311 236 334 Fallow Abandoned - 112 236 376 343 370 355 243 349 arable - - 157 328 358 338 358 220 352 Bare fellow 0 100 187 259 397 493 640 389 219 Wetland Open - 114 146 232 310 369 357 387 193 woodland 32 99 115 124 316 336 428 382 129 Burnt area Grass & 0 95 106 171 390 296 379 240 147 shrubland 35 99 137 188 303 340 364 240 215 Total

  16. Disturbances Several facts ▲ the total area of wild vegetation fires in Russia in 2003 enveloped 23 million ha including 17 million ha of forests (4.4 times all Austrian forests); ▲ these fires produced direct carbon emissions at ~270 million ton of carbon– more than overall target of the Kyoto Protocol; the average flux for 2003-2008 is 160 mln t ▲ an outbreak of Siberian moth in Russia in 2001 covered ~10 million ha ▲ during the recent years insects damaged Canadian forests at the area of above 20 million ha

  17. Way to estimate uncertainty • Assessment of precision • Standard sensitivity analysis (Monte Carlo, error propagation) • Transformation precision into uncertainty • Harmonizing and multiple constraints of results obtained by independent methodologies

  18. Fire 2009 Emissions, g C per m 2 < 10 11 - 25 26 - 50 51 - 100 101 - 250 251 - 500 501 - 1 000 1 001 - 1 500 Source: Global Fire Database GFED3, Giglio et al. 2010, van der Werf et al. 2010

  19. Fire 1997-2009: Average annual area 8.8 mln ha, carbon emissions ~130 Tg C yr-1 Emissions, g C per m 2 and year 0 5 0 5 0 0 0 0 1 2 5 7 0 0 0 0 1 2 3 3 < - - - - - 1 6 1 - > 1 2 5 6 1 1 7 0 0 1 2 Source: Global Fire Database GFED3, van der Werf et al. 2010

  20. Net Ecosystem Carbon Balance for Russia (average fluxes for 2003-2008, Tg C yr -1 , sign “ - “ means sink) Land classes and components Flux, Tg C yr-1 Forest -563±250 Open woodland -28±21 Shrubs -22±12 Natural grassland -58±26 Agriculture land -32±28 Wetland (undisturbed) -47±26 Disturbed wetland +36±20 Wood products +48±20 Food products (import-export) +18±16 Flux to hydro- and lithosphere +81±36 NECB (NBP) -567±259

Recommend


More recommend