identification of wiener hammerstein systems with process
play

Identification of Wiener-Hammerstein systems with process noise - PowerPoint PPT Presentation

Identification of Wiener-Hammerstein systems with process noise using an Errors-in-Variables framework Maarten Schoukens, Fritjof Griesing Scheiwe Benchmarks Overview Best Linear Approximation Wiener-Hammerstein Output-Error Influence of


  1. Identification of Wiener-Hammerstein systems with process noise using an Errors-in-Variables framework Maarten Schoukens, Fritjof Griesing Scheiwe

  2. Benchmarks

  3. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  4. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  5. Best Linear Approximation

  6. Bussgang’s Theorem Stationary Gaussian input  Static nonlinearity ≈ static gain 𝑔 𝑣 = 𝛿𝑣

  7. Structure detection Wiener-Hammerstein   G bla q H q S q ( ) ( ) ( )  Only gain factor

  8. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  9. Wiener-Hammerstein: OE

  10. Identifiability Gain exchange

  11. Identifiability Gain exchange Delay exchange

  12. Best Linear Approximation Gaussian   G bla ( q ) H ( q ) S ( q )  poles, zeros BLA = poles, zeros system

  13. Partition the Dynamics BLA

  14. Nonlinear optimization Initial parameter values  Optimization of all parameters together  Levenberg-Marquardt algorithm

  15. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  16. Influence of the Process Noise Bussgang’s e x (t) : Gaussian x(t) : Gaussian Theorem   G bla ( s ) S ( s ) R ( s )

  17. Influence of the Process Noise Bussgang’s e x (t) : Gaussian x(t) : Gaussian Theorem   G bla ( s ) S ( s ) R ( s ) γ depends on e x (t) x(t) depends on e x (t)

  18. Example: 3 rd Degree NL 𝛿 = 𝐹 𝑧𝑦 0 𝑧 = 𝑦 0 + 𝑓 𝑦 3 𝐹 𝑦 0 𝑦 0 = 𝑦 03 + 3𝑓 𝑦 𝑦 02 + 3𝑓 𝑦2 𝑦 0 + 𝑓 𝑦3 = 𝐹 𝑦 04 + 3𝑓 𝑦 𝑦 03 + 3𝑓 𝑦2 𝑦 02 + 𝑓 𝑦3 𝑦 0 𝐹 𝑦 02 = 𝐹 𝑦 04 + 3𝑓 𝑦2 𝑦 02 Assumptions: 𝐹 𝑦 02 Gaussian = 3𝜏 𝑦4 + 3𝜏 𝑦2 𝜏 𝑓2 Zero-mean Independent 𝜏 𝑦2 = 3𝜏 𝑦2 + 3𝜏 𝑓2 Bias due to odd nonlinear terms

  19. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  20. Wiener-Hammerstein: EIV

  21. Wiener-Hammerstein: EIV EIV Framework?

  22. Wiener-Hammerstein: EIV EIV Framework? Output depends on input noise  Bias!

  23. Wiener-Hammerstein: EIV EIV Framework? Let us try it anyway:

  24. Wiener-Hammerstein: EIV Let us try it anyway: Direct optimization of input on selected freq. Penalty term introduces prior knowledge

  25. Overview Best Linear Approximation Wiener-Hammerstein – Output-Error Influence of the process noise? Wiener-Hammerstein – EIV Results

  26. Results Estimation Data Random Phase Multisine Input: frequencies: 0-15 kHz RMS: 0.7581 4096 Samples 1 Period 10 Realizations fs: 78.125 kHz

  27. Results BLA: order 6/6 Wiener-Hammerstein: Neural Network 3 tansig activation functions

  28. Output Results Linear Error WH EIV

  29. Results Output Linear Error WH EIV

  30. Results Simulation – Validation/Test Results Multisine LTI WH OE WH EIV 0.055875 Realization 1 0.031387 0.022458 0.055875 Realization 2 0.031387 0.023080 Realization 3 0.055875 0.031387 0.040724 0.055875 Realization 1-3 0.031113 0.025004

  31. Results Simulation – Validation/Test Results Sinesweep LTI WH OE WH EIV 0.019492 Realization 1 0.01485 0.039964 0.019492 Realization 2 0.01485 0.02139 Realization 3 0.019492 0.01485 0.022443 0.019492 Realization 1-3 0.011967 0.01913

  32. Conclusions Process noise introduces a bias through odd NL terms Identification with process noise is not just an EIV problem EIV methods can result in better estimates

Recommend


More recommend