ICML 2019 in Long Beach Model Function Based Conditional Gradient Method with Armijo-like Line Search Peter Ochs Mathematical Optimization Group Saarland University — 13.06.2019 — joint work: Yura Malitsky 1 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Classic Conditional Gradient Method Constrained Smooth Optimization Problem: min x ∈ C f ( x ) ◮ C ⊂ R N compact and convex constraint set Conditional Gradient Method: Update step: y ( k ) ∈ argmin ∇ f ( x ( k ) ) , y � � y ∈ C x ( k +1) = γ k y ( k ) + (1 − γ k ) x ( k ) Convergence mainly relies on: ◮ step size γ k ∈ [0 , 1] ( we consider Armijo line search ) ◮ Descent Lemma (implies curvature condition) 2 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Generalizing the Descent Lemma Descent Lemma: x � 2 x � | ≤ L | f ( x ) − f (¯ x ) − �∇ f (¯ x ) , x − ¯ 2 � x − ¯ provides a measure for the linearization error � quadratic growth ◮ f smooth non-convex ◮ L is the Lipschitz constant of ∇ f 3 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Generalizing the Descent Lemma Generalization of the Descent Lemma: | f ( x ) − f (¯ x ) − �∇ f (¯ x ) , x − ¯ x � | ≤ ω ( � x − ¯ x � ) provides a measure for the linearization error � growth given by ω ◮ f smooth non-convex ◮ ω : R + → R + is a growth function 3 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Generalizing the Descent Lemma Generalization of the Descent Lemma: | f ( x ) − f ¯ x ( x ) | ≤ ω ( � x − ¯ x � ) provides a measure for the approximation error � growth given by ω ◮ f non-smooth non-convex ◮ ω : R + → R + is a growth function 3 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Model Assumption | f ( x ) − f ¯ x ( x ) | ≤ ω ( � x − ¯ x � ) f ( x ) + ω ( � x − ¯ x � ) f ( x ) ¯ x f ( x ) − ω ( � x − ¯ x � ) 4 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Model Function based Conditional Gradient Method Model Function based Conditional Gradient Method : y ( k ) ∈ argmin f x ( k ) ( y ) y ∈ C x ( k +1) = γ k y ( k ) + (1 − γ k ) x ( k ) Examples for Model Assumption: | f ( x ) − f ¯ x ( x ) | ≤ ω ( � x − ¯ x � ) ◮ additive composite problem: min x ∈ C { f ( x ) = g ( x ) + h ( x ) } non-smooth smooth ◮ model function: f ¯ x ( x ) = g ( x ) + h (¯ x ) + �∇ h (¯ x ) , x − ¯ x � ◮ oracle: argmin � ∇ h ( x ( k ) ) , y � g ( y ) + y ∈ C 5 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Examples Examples for Model Assumption: | f ( x ) − f ¯ x ( x ) | ≤ ω ( � x − ¯ x � ) ◮ hybrid Proximal–Conditional Gradient , example: min { f ( x 1 , x 2 ) = g ( x 1 ) + h ( x 2 ) } x 1 ∈ C 1 non-smooth smooth x 2 ∈ C 2 x 2 � + g ( x 1 ) + 1 x 1 � 2 ◮ f ¯ x ( x 1 , x 2 ) = h (¯ x 2 ) + �∇ h (¯ x 2 ) , x 2 − ¯ 2 λ � x 1 − ¯ 2 λ � y 1 − x ( k ) g ( y 1 ) + 1 1 � 2 argmin y 1 ∈ C 1 ◮ oracle: � � ∇ h ( x ( k ) argmin 2 ) , y 2 y 2 ∈ C 2 6 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Examples ◮ composite problem ◮ second order Conditional Gradient Design model functions for your problem! 7 / 7 c � 2019 — Peter Ochs Model Based Conditional Gradient
Recommend
More recommend