hypergame semantics ten years later
play

Hypergame semantics: Ten years later Dominic J. D. Hughes Stanford - PowerPoint PPT Presentation

Hypergame semantics: Ten years later Dominic J. D. Hughes Stanford University GaLoP06, Seattle, 11 August 2006 Hypergames model/semantics For a 2 nd -order logic / polymorphic progr. language Two principles: - ( GM ) G ames as M oves


  1. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P

  2. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X

  3. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z )

  4. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z )

  5. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N

  6. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n

  7. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X  at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) O ’s  hyper- at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N move  n

  8. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n

  9. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N

  10. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n

  11. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n N × N → N � P ’s at N : N × N → N × ( ∀ Y.Y × Y → Y ) → hyper- n move

  12. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n

  13. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m

  14. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m

  15. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m 4

  16. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m 4 4

  17. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m 4 4 5

  18. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m 4 4 5 5

  19. Impredicativity: dynamic solution � a, b � �→ a : ∀ X . X × X → X = P ∀ X . X × X → X at P : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → ( ∀ Z.Z × Z → Z ) at N : ( ∀ X.X × X → X ) × ( ∀ Y.Y × Y → Y ) → N × N → N n at N : N × N → N × ( ∀ Y.Y × Y → Y ) → N × N → N n m m 4 4 5 5 � �� � succ

  20. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment • Compact = finite ‘spine’

  21. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment • Compact = finite ‘spine’

  22. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment • Compact = finite ‘spine’

  23. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment • Compact = finite ‘spine’

  24. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment • Compact = finite ‘spine’

  25. Full completeness for system F • Uniform (UC) • Innocent ← Hyland-Ong • Total ← λ fragment ∀ X. X × X → X • Compact = finite ‘spine’ at ◦ : ◦ × ◦ → ◦ • •

  26. Formal Hypergames

  27. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  28. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  29. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  30. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ( ∀ Y.Y ) → ( ∀ Y.Y ) N → B ❄ ( ∀ Y.Y ) → ( N → B )

  31. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ( ∀ Y.Y ) → ( ∀ Y.Y ) � prenex N → B ❄ ( ∀ Y.Y ) → ( N → B )

  32. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ( ∀ Y.Y ) → ( ∀ Y.Y ) � prenex N → B ∀ Y . ( ∀ Y.Y ) → Y ❄ ( ∀ Y.Y ) → ( N → B )

  33. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ( ∀ Y.Y ) → ( ∀ Y.Y ) � prenex ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  34. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  35. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  36. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ ( ∀ Y.Y ) → ( N → B )

  37. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y ❄ ∀ Y . ( ∀ Y.Y ) → Y N → B ❄ N → B ❄ ( ∀ Y.Y ) → ( N → B ) ( ∀ Y.Y ) → ( N → B )

  38. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y N → B ❄ ( ∀ Y.Y ) → ( N → B ) N → B ❄ ( ∀ Y.Y ) → ( N → B )

  39. • Assertion : type occurrence - Lorenzen/Felscher dialogue games (1960, 1985) prenex • A → ∀ X.B ∀ X. ( A → B ) � • resolve = exhaustively instantiate leading ∀ s ∀ X. X → X ∀ Y.Y N → B ❄ ( ∀ Y.Y ) → ( N → B ) • n branches : A 1 → A 2 → . . . → A n → X N → B ❄ ( ∀ Y.Y ) → ( N → B )

  40. Hypergame H ( A )

  41. Hypergame H ( A ) • O resolves A

  42. Hypergame H ( A ) ∀ X. X → X → X N • O resolves A ❄ N → N → N

  43. Hypergame H ( A ) ∀ X. X → X → X N • O resolves A ❄ N → N → N

  44. Hypergame H ( A ) ∀ X. X → X → X N • O resolves A ❄ N → N → N O

  45. Hypergame H ( A ) • O resolves A • resolve opposing branch

  46. Hypergame H ( A ) • O resolves A • resolve opposing branch A 1 → . . . → A i → . . . → A n → X O B 1 . . i . B m ❄ A i [ X 1 := B 1 , . . . , X m := B m ] P

  47. Hypergame H ( A ) • O resolves A • resolve opposing branch A 1 → . . . → A i → . . . → A n → X O i ❄ A i [ X 1 := B 1 , . . . , X m := B m ] P

  48. Hypergame H ( A ) • O resolves A • resolve opposing branch A 1 → . . . → A i → . . . → A n → X O B 1 . . i . B m ❄ A i [ X 1 := B 1 , . . . , X m := B m ] P

  49. Hypergame H ( A ) • O resolves A • resolve opposing branch A 1 → . . . → A i → . . . → A n → X O B 1 . . i . B m ❄ A i [ X 1 := B 1 , . . . , X m := B m ] P

Recommend


More recommend