Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions Hunting for Ultra High Energy Neutrinos Eray Sabancilar Physics Department, Arizona State University, Tempe AZ. T-2 Theory Seminar, Los Alamos National Laboratory, Los Alamos, NM, November 25, 2013. Cecilia Lunardini, ES, Lili Yang, JCAP 1308, 014 (2013). Cecilia Lunardini, ES, PRD 86, 085008 (2012). Veniamin Berezinsky, ES, Alexander Vilenkin, PRD 84, 085006 (2011). Veniamin Berezinsky, Ken Olum, ES, Alexander Vilenkin, PRD 80, 023014 (2009). Eray Sabancilar Hunting for Ultra High Energy Neutrinos 1
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions Introduction Propagation of UHE Neutrinos Cross Section Thermal Effects Neutrino Absorption UHE Neutrino Sources Cosmic Strings Cosmic Necklaces Superheavy Dark Matter Cosmogenic Neutrinos Astrophysical Sources: AGNs, GRBs Conclusions Eray Sabancilar Hunting for Ultra High Energy Neutrinos 2
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions INTRODUCTION Eray Sabancilar Hunting for Ultra High Energy Neutrinos 3
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions � Neutrino Sources: Top-Down or Bottom Up? ,"45-',61 � � � Superheavy Dark Matter, Cosmic Strings, Cosmic Necklaces L6556K$$$$$$/: F"GH.$6-$ 96:$$$$$$;6<, HGG"I"-H5'6, H,,')'IH5'6, AGNs, GRBs, Cosmogenic Neutrinos � :J"$H5$-"15 DE$ � 7@ A7 "C 78 MIH5$1:"G5-4K Courtesy of Berg&Scholten ’09. Eray Sabancilar Hunting for Ultra High Energy Neutrinos 4
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions Cosmic Ray/Neutrino Flux CAPRICE AMS 10 0 BESS98 protons only Ryan et al. Grigorov JACEE Akeno Tien Shan all-particle MSU 10 -2 under- * air showers E 2 dN/dE (GeV cm -2 sr -1 s -1 ) optical: electrons KASCADE CASA-BLANCA ground * radio - deep water DICE * acoustics HEGRA - deep ice positrons CasaMia Jem-EUSO Tibet 10 -4 Fly Eye NuMoon, ANITA Haverah LOFAR, SKA Yakutsk AGASA Baikal, SPATS HiRes 10 -6 antiprotons PTOLEMY 10 -8 10 -10 10 0 10 2 10 4 10 6 10 8 10 10 10 12 !""#$% &'()*+,"-(.$/,'0"-1"2$3"45-',61 7 E kin (GeV / particle) Figures from: Hillas ’06 and Spiering ’12. Eray Sabancilar Hunting for Ultra High Energy Neutrinos 5
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions Status of (Ultra) High Energy Neutrino Detectors Experiment Location Technique Status DUMAND Hawaii Water Cherenkov turned down 1996 NT200+ Lake Baikal Water Cherenkov operating GVD Lake Baikal Water Cherenkov design phase AMANDA South Pole Water Cherenkov terminated 2009 IceCube South Pole Water Cherenkov operating ANTARES Mediterranean Water Cherenkov operating NESTOR Mediterranean Water Cherenkov R&D for KM3NeT NEMO Mediterranean Water Cherenkov R&D for KM3NeT KM3NeT Mediterranean Water Cherenkov design phase HIRES USA Air shower terminated 2009 Auger Argentina Air shower operating TA USA Air shower operating JEM-EUSO Satellite Air shower construction ASHRA Hawaii air shower partial operation CRTNT China air shower planned ANITA Antarctica (balloon) Radio (ice) flights continuing RICE South Pole Radio (ice) terminated ARA South Pole Radio (ice) construction stage 1 ARIANNA Antarctic shelf Radio (ice) construction stage 1 SALSA open Radio (salt mine) conceptual phase SAUND Caribbean Sea Acoustic terminated SPATS South Pole Acoustic test array operating AMADEUS Mediterranean Sea Acoustic test array operating ON ν DE Mediterranean Sea Acoustic test array finished Baikal Lake Baikal Acoustic R&D GLUE USA Radio (moon) terminated NUMOON Netherlands Radio (moon) operating Kalyzhin Russia Radio (moon) operating LORD Satellite Radio (moon) planned FORTE Satellite Radio (Earth) terminated Spiering ’12. Eray Sabancilar Hunting for Ultra High Energy Neutrinos 6
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions UHE Neutrino Fluxes, Detectability Limits/Upper Bounds Fig from Lunardini, ES, Yang ’13 0.001 Necklaces ¡ SCSC ¡ E 2 J H E L H GeV cm - 2 s - 1 sr - 1 L SHDM ¡ AGN ¡ Cusps ¡ Cosmogenic ¡ Kinks ¡ 10 - 5 FORTE ¡ E 2 J(E) ¡(GeV ¡cm -‑2 ¡ s -‑1 ¡ sr -‑1 ) ¡ ¡ RICE ¡ NuMoon ¡ ANITA ¡ 10 - 7 JEM-‑EUSO ¡nadir ¡ LOFAR ¡ JEM-‑EUSO ¡Itled ¡ ¡ 10 - 9 SKA ¡ 10 - 11 10 9 10 11 10 13 10 15 E ¡(GeV) ¡ E ê GeV Cosmic Necklaces: Berezinsky, Martin, Vilenkin ’97 ; Super Heavy Dark Matter (SHDM): Berezinsky, Kachelriess, Vilenkin ’98; Kuzmin, Rubakov ’98; Esmaili, Ibarra, Peres ’12 : Cosmic String Cusps: Berezinksy, ES, Vilenkin ’11 ; Cosmic String Kinks: Lunardini, ES ’12 ; Superconducting Cosmic Strings: Berezinsky, ES, Olum, Vilenkin ’09 ; Active Galactic Nuclei: Kalashev, Kuzmin, Semikoz, Sigl ’02 : Cosmogenic Neutrinos: Berezinsky, Zatsepin ’69; Engel, Seckel, Stanev ’01 . Eray Sabancilar Hunting for Ultra High Energy Neutrinos 7
Outline Introduction Propagation of UHE Neutrinos UHE Neutrino Sources Conclusions Cosmic Messengers: Ultra High Energy Neutrinos • Neutrinos only interact weakly with the cosmic neutrino background (C ν B). • Neutrinos can propagate to us from very high redshifts, z ν ∼ 220 E − 2 / 5 . Berezinsky ’92 11 • Astrophysical mechanisms may produce UHE neutrinos with E � 10 11 GeV. • Neutrinos with E > 10 11 GeV could be a signature of top-down mechanisms. • Ultra high energy (UHE) ν s provide a unique opportunity to test the fundamental interactions at these energies. • For such high energies, only ν s can make it to the Earth. • The flux of neutrinos produced by decays of pions and kaons is constrained from above by the observed diffuse gamma ray background. Berezinsky, Smirnov ’75. Eray Sabancilar Hunting for Ultra High Energy Neutrinos 8
Outline Introduction Cross Section Propagation of UHE Neutrinos Thermal Effects UHE Neutrino Sources Neutrino Absorption Conclusions PROPAGATION OF UHE NEUTRINOS Eray Sabancilar Hunting for Ultra High Energy Neutrinos 9
Outline Introduction Cross Section Propagation of UHE Neutrinos Thermal Effects UHE Neutrino Sources Neutrino Absorption Conclusions νν Cross Section Cross sections depend on the Mandelstam variable s : s = ( q µ + p µ ) 2 ≈ 2 E (1 + z ) �� � p 2 (1 + z ) 2 + m 2 ν j − p (1 + z ) cos θ , (1) q µ = E (1 + z )[1 , ˆ q ] , ← UHE ν (2) p µ = �� � p 2 (1 + z ) 2 + m 2 ν j , p (1 + z ) . ← C ν B ν (3) 10 - 30 10 - 31 10 - 32 s H cm 2 L 10 - 33 10 - 34 10 - 35 10 - 36 10 10 10 11 10 12 10 13 10 14 10 15 10 16 E' H GeV L m = 0 . 08 eV, p = 0, no thermal effects taken into account. Z0-Resonance: Weiler ’82 ; ν Horizon : Berezinsky ’92 ; Propagation: Roulet ’93; Fargion et al. ’99; Eberle et al. ’04 ; Thermal effects: Barenboim et al. ’05, D’Olivo et al. ’06 . Eray Sabancilar Hunting for Ultra High Energy Neutrinos 10
Outline Introduction Cross Section Propagation of UHE Neutrinos Thermal Effects UHE Neutrino Sources Neutrino Absorption Conclusions Cosmic Neutrino Background / Thermal Effects • The Hubble expansion rate: H ( z ) = ˙ a � Ω r (1 + z ) 4 + Ω m (1 + z ) 3 + Ω Λ . a = H 0 (4) • Neutrinos decouple from the primordial plasma when Γ scat ∼ H ( T dec ∼ 1 MeV ): dn ν ( p , z ) = (1 + z ) 3 d 3 p 1 e p / T 0 + 1 . (5) (2 π ) 3 • The average momentum of a background neutrino is p ≈ 3 . 6 T 0 ≈ 6 . 1 × 10 − 4 eV . • Thermal effects become important when ¯ p (1 + z th ) ∼ m j : m j 1 + z th ∼ 16 10 − 2 eV . (6) Eray Sabancilar Hunting for Ultra High Energy Neutrinos 11
Outline Introduction Cross Section Propagation of UHE Neutrinos Thermal Effects UHE Neutrino Sources Neutrino Absorption Conclusions Cosmic Neutrino Background / Thermal Effects � dn ν ( p , z ) σ ( E , p ; m j , z ) ¯ σ ( E ; z , m j ) = . (7) � dn ν ( p , z ) 10 � 30 10 � 31 10 � 32 Σ � cm 2 � 10 � 33 10 � 34 10 � 35 10 � 36 10 10 10 12 10 14 10 16 10 18 E � GeV � Figure : m = 10 − 3 eV, z = 100. Blue: C ν B at rest, Red: p = p rms , Purple: p = p rms averaged over angle, Black: ¯ σ → Averaged over all momenta and angle (this work). Eray Sabancilar Hunting for Ultra High Energy Neutrinos 12
Outline Introduction Cross Section Propagation of UHE Neutrinos Thermal Effects UHE Neutrino Sources Neutrino Absorption Conclusions Neutrino Absorption • An UHE neutrino is absorbed when τ α = � dt σ ν n ν � 1. • The total non-resonant cross section at s � m 2 W : σ nr ≈ 7 . 8 G 2 F m 2 W /π : � 1 + z � 3 / 2 τ nr ≈ 1 . 0 . (8) 140 • The maximum value of the resonant cross section, σ r ∼ 5 × 10 − 32 cm 2 : � 1 + z � 3 / 2 τ r ≈ 1 . 0 . (9) 10 • Resonant absorption occurs at � 0 (1 + z ) 2 + m 2 res ∼ m 2 p 2 E ′ z � z dip ≈ 10 . Z / ¯ j , (10) Eray Sabancilar Hunting for Ultra High Energy Neutrinos 13
Recommend
More recommend