The origin of pseudogap in HTSC Yuval Lubashevsky Prof. Amit Keren
The superconductor energy gap The BCS superconductor
The pseudogap temperature Timusk Rep. Phys. 62 61-122 1999 NMR Resistivity Specific heat T c T* overdoped underdoped Takagi H PRL 69 2975 1992 Bankay M Loram J W T* PRB 50 Physica C 6416 1994 282-287 1405 1997
ARPES measurements Theory Theory dSC state Normal state Experiment Experiment PG state dSC Kanigel
Main question What are the interactions that affect the T*?
The CLBLCO system Ca La Ba La Cu O x 1 x 1.75 x 0.25 x 3 y • Similar structure as the well known YBCO • 1:2:3 atomic ratio • The main structure doesn’t change with the families • Controllable doping level (y parameter) • Controllable magnetic coupling (x parameter)
CLBLCO phase diagram • Similar phase diagrams 450 T c 400 T N 350 • The family with the T g 300 250 highest T c have the T (K) 200 80 highest T N on the x=0.1 lowest doping. 40 x=0.2 x=0.3 x=0.4 0 6.6 6.9 7.2 • Big difference at T c y max between the families Ofer PRB 73 220508 2006
Transformation of the entire doping range. opt opt p p p K ( y y ) (Ca x La 1-x )(Ba 1.75-x La 0.25+x )Cu 3 O y m x x 7 420 T N ,T g T c x x 6 T N 360 0.1 0.1 5 300 0.2 0.2 4 3 0.3 240 0.3 2 T N, g, C (K) 0.4 0.4 180 max T N, g, C / T C T C 80 1.0 60 T g 40 0.5 20 0 0.0 6.4 6.6 6.8 7.0 7.2 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 y P m max T , T , T T , T , T / T N g c N g c c y K ( x ) y The scaling works in the entire doping range apart for x=0.1 ? Ofer PRB 73 220508 2006
The role of anisotropies • T N is determined by the in-plane J and out of plane coupling. J • We extracted J out of T N . Unified Phase Diagram 20 x=0.1 x=0.2 x=0.3 15 x=0.4 max 10 ( J, T g,c ) / T c 1.2 0.8 0.4 0.0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 P m . The in-plane J is extracted from T N Ofer PRB 73 220508 2006
Scaling Conclusion • We found that T c scale like the in-plane J therefore is a consequence of a 2D magnetic interaction. T J c • Question: Does T* scales with J as T c does, or with some other magnetic parameter?
The experimental methods • The SQUID (Superconducting QUantum Interference Device) • The temperature range is 1.2K to 310K • The field range is up to 6.5T.
Susceptibility M • Definition lim H 0 0 H M H • Practice dc • Where D is known as the demagnetizing factor, and it get different values for different geometries. 0 dc 1 D 0 • For needle like sample D=0, then: dc 0
Measurement condition [cm H 10 1 kG =1.809 3 /gm] [cm 3 /gm] H 10 -2 kG =2.571 Geometric dependence 6 -9 emu] 0 9 -40 0 40 M[10 1.0 0.5 8 0.0 -6 -0.5 7 3 /gr] -1.0 -7 cm 6 4 0.0 4 -4.0x10 4.0x10 [10 H [G] 5 Field dependence 4 3 0 1 2 3 4 5 h/2R
Raw data This phenomena y=7.007 12 has been noticed y=6.93 y=6.87 by D C Johnston 10 y=6.75 on 1988 3 /gr] 8 -7 cm 3.8 6 [10 3.6 • The minimum point 3.38 3 /gr] 3.4 4 -7 cm drop systematically 3 /gr] 3.36 3.2 [10 -7 cm with the doping- first 3.0 [10 3.34 2 y=7.007 clue of pseudogap effect y=6.93 0 60 120 180 240 300 2.8 y=6.87 3.32 X=0.2 y=6.75 y=6.93 ( T* behavior). T [K] 180 240 300 T [K] 200 250 300 T [K]
f y ( ) 0 4.5 T 299 o K 3 /gr] 4.0 -7 cm 3.5 [10 x=0.1 3.0 x=0.2 x=0.3 x=0.4 2.5 2.0 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 Y • The value of is increasing with the doping (Pauli susceptibility).
Susceptibility types • Isolated spin: Langevin paramagnetism, Curie law 2 N C B 0 3 k T T B • Weakly coupled spins: Curie-Weiss C 0 T • Pauli spin (Landau ) : 2 0 ( ) T const D ( ) B f • Core: Van Vleck and Langevin 0 ( ) T const There is no traditional theory about increasing susceptibility with T
Strongly coupled spins • Two coupled spins according to Heisenberg model. 2 J J e 2 cosh 0 2 0.2 pseodogaped fitting function • shrinking arcs phenomena. 2 2 T T A T ( ) J 0.1 0 * * T T • The fitting term. shrinking arcs function strong coupled spins function const 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 T * cosh k B T/J T
The fitting function C C 1 2 C 0 3 T * T cosh T C.W. + PG + CORE 12 C.W. Peudogap 3.60 10 core 3 /gr] 8 3.56 -7 cm [10 6 3.52 160 200 240 280 4 0 100 200 300 T T [K]
Curie-Weiss temperature 2 S S 1 Z J i i 3 K i B T T N Antiferromagnetic susceptibility 0.6 40 x=0.1 x=0.1 x=0.2 x=0.2 0.5 x=0.3 x=0.3 30 x=0.4 x=0.4 0.4 max [K] 0.3 20 /T c 0.2 10 0.1 0 0.0 -0.25 -0.20 -0.15 6.80 -0.10 6.85 -0.05 6.90 6.95 7.00 7.05 7.10 P m y
T* 24 4 x=0.1 x=0.1 22 x=0.1 x=0.2 x=0.2 x=0.2 600 20 x=0.3 x=0.3 x=0.3 x=0.4 x=0.4 18 3 x=0.4 16 max max T* [K] T*/T N T*/T c 14 400 12 2 10 8 200 1 6 6.85 6.90 6.95 7.00 7.05 -0.2 -0.1 0.0 -0.25 -0.20 -0.15 -0.10 -0.05 y P m P m 7 x 6 0.1 5 0.2 4 3 0.3 The T* doesn ’ t scale well with T c . 2 0.4 max T N, g, C / T C T* scale with T N 1.0 0.5 Very similar to the T c /T N scaling. 0.0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 P m
Conclusions We added the T* to the phase diagram T* scale like T N , and it is a 3D magnetic phenomena. T c is a 2D magnetic phenomena. 700 1.2 T c 600 1.0 T N 500 0.8 T g max 400 * /T N * 0.6 T 300 T c , T N , T g , T T (K) 200 0.2 * T c 80 x T N /T g T 0.4 x=0.1 0.1 0.3 40 x=0.2 0.2 x=0.3 0.1 x=0.4 0.0 0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 6.3 6.6 6.9 7.2 P m y
Acknowledgment I’m grateful to Prof. Amit Keren Thanks to: Dr. Arkady Knizhnik, Avi Post, Dr.Michael Reisner, Dr. Leonid Iomin And the lab’s fellow -students: Orenstein, Oren, Eran, Meni, Oshri, Daniel, Maniv, Gil, Yoash, Ana Specially to Rinat Ofer for her help
Recommend
More recommend