how to store a secret
play

How to Store a Secret Salim El Rouayheb Illinois Institute of - PowerPoint PPT Presentation

How to Store a Secret Salim El Rouayheb Illinois Institute of Technology A Brief History of Codes for Storage According to Emina 1982 Reed Solomon paper (1960) What if some nodes cannot be trusted? Adversary (passive for now) controls one node


  1. How to Store a Secret Salim El Rouayheb Illinois Institute of Technology

  2. A Brief History of Codes for Storage According to Emina 1982 Reed Solomon paper (1960)

  3. What if some nodes cannot be trusted? Adversary (passive for now) controls one node File Key K A Disk 1 K Secret Sharing [Shamir ’79] Eavesdropper user 1 Wiretap channel II A+K . Disk 2 Coset Codes . [Ozarow & Wyner ’84] . Disk 3 A+2K user 4 Disk 4 A+3K (n,k)=(4,2)

  4. Wiretap Network Secure network coding Secret [Cai & Yeung ’02] [ElRouayheb, Soljanin ’07] Coset Code [ElRouayheb, Sprintson, Soljanin ’10] Shares Multicast Network with Main Message There: Wiretapped Edges Separation is optimal Coset code + Network Code

  5. Coset Codes/Secret Sharing are Not Enough failure • Because storage systems are dynamic Disk 1 K • Can we still protect the New disk A+K stored secret? K A+K Disk 2 A+2K • Two surprising results All the data is leaked ! Disk 3 A+2K User Disk 4 A+3K

  6. General Problem Formulation failure • (n,k) system Disk 1 • d: repair degree New disk • α : storage per node β • β : repair bandwidth Disk 2 β • b: nbr of compromised nodes d β • Adversary: passive/active Disk 3 . Pawar, ¡ElRouayheb, ¡Ramchandran, ¡ ’10 ¡ . . User k Disk n What is the largest secret I can store in this system without loosing it or revealing it?

  7. A Divide and Share Scheme 1 2 3 1 4 5 User always sees all the 5 packets 2 4 6 1 2 Eavesdropper always observe 3 packets 3 5 6 3 (n,k,d)=(4,2,3) Rashmi, ¡Shah, ¡Kumar ¡& ¡Ramchandran ¡'09 ¡

  8. Secure Code Random K 1 1 1 2 3 keys K 2 2 1 4 5 3 Secret: K 3 X1 X2 X3 4 X 1 +2K 1 +K 2 +K 3 2 4 6 X 2 +K 1 +2K 2 +K 3 5 6 X 1 +2X 2 +K 1 +K 2 +2K 3 3 5 6 Coset Code

  9. Secure Code in Bandwidth-Limited Regime and d<n-1 (n,k,d)=(7,3,4) Iwan’s Observation

  10. Upper Bound on Secrecy Capacity 1 � d β n+1 � Pawar, ¡ElRouayheb, ¡Ramchandran, ¡ ’10 ¡ k ∑ C ( α , β ) ≤ min{( d − i + 1) β , α } 2 � n+2 � . ¡ ( d − 1) β i = l + 1 . ¡ Previous codes achieve . ¡ n+l � this upper bound for k � bandwidth-limited regime n+l+1 � . ¡ α≥dβ ¡ . ¡ ( d − k + 1) β . ¡ . ¡ . ¡ . ¡ ( d − k + 1) β n+k � n �

  11. General Secure Codes file Coset Regenerating Code Codes Storage System Keys Separation is Optimal for Bandwith- Limited Regime

  12. Surprising result #1: Separation is NOT Optimal a 1 0.5MB n 1 a 2 0.5MB 0.5MB b 1 n 2 b 2 Replacement node New node β =1/3 a 1 a 1 +b 1 a 1 +2a 2 +b 1 +b 2 n 3 a 2 2 a 2 + b 2 2 a 1 +b 1 n 4 a 2 + b 2 (n,k,d)= (4,2,3) α =1 β =1/2 Secret Size=1/2MB Secret Size=2/3MB It may be better not to use all your budgeted bandwidth or storage! Falling back to bandwidth-limited regime codes is always optimal for (n,n-1,n-1) systems Tandon ¡et ¡al. ¡’10 ¡

  13. Finding the Optimal Inner Code is not trivial 0.45 Achievable non- secure 0.4 secure regenerating codes tradeoff 0.35 normalised bandwidth β /M Goparaju, ¡ElRouayheb, ¡ 0.3 Calderbank, ¡ ’ISIT10 ¡ 0.25 0.2 MDS 0.15 Divide & 0.1 Share 0.05 0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 normalised storage per node α /M (n,k,d)=(7,6,6)

  14. What is the best we can do with a Separation Scheme Black Box (cannot touch) • Simpler design if we want different files with different security requirements • Cloud user: does not have control over the code Theorem: [Goparaju, R., Calderbank, Poor Netcod ’13] Surprising ◆ b ✓ 1 result #2 C ∗ s = ( k − b ) 1 − α n − k

  15. Proof based on Geometry of Repair Spaces (n,k)=(5,3) Data observed by Eve = b=2 compromised b α 1 Data stored on nodes 1’ and 2’ nodes α + 2 dim( S 1 + S 2 ) Data downloaded from node 2 1’ 3 α /8 4 5’ α /4 S 1 +S 2 +S 3 S 1 +S 2 α /2 S 1 5 α user Secure (linear) capacity= k α – amount observed by Eve s ≤ ( k − b ) α C ∗ 2 b Theorem: [Goparaju, R., Calderbank, Poor Netcod ’13] dim( S i 1 + S i 2 + · · · + S i b ) ≥ α 2 + α 2 2 + · · · + α 2 b

  16. A Taste of the Proof… α File:( f 1 , . . . , f k ) f i = ( f i 1 , . . . , f i α ) f 1 1 k k X X p 1 = A i f i , p 2 = B i f i α f 2 2 i =1 i =1 • Node 1’ downloads: S 3 f 3 3 1’ S k+1 S 2 f 2 S 3 f 3 4 p 1 S k+2 S k f k = S k +1 A 1 f 1 + S k +1 A 2 f 2 + · · · + S k +1 A k f k 5 = S k +2 B 1 f 1 + S k +2 B 2 f 2 + · · · + S k +2 B k f k p 2 S k +1 A 1 + S k +2 B 1 = F n q S 2 = S k +1 A 2 = S k +2 B 2 S k = S k +2 A k = S k +1 B k • Analogy to interference alignment • Write these subspace conditions for all failures • Use them to proof theorem by induction

  17. Open Problems 0.45 secure 0.4 1. Storage limited Regime? regenerating codes 2. Storage/Repair Bandwidth tradeoff 0.35 to store a secret of a given size normalised bandwidth β /M 3. Active adversary (omniscient, 0.3 Limited knowledge, … ) 0.25 4. Linear/vs non-linear? 5. Can shared randomness help? 0.2 0.15 we know what to do here 0.1 0.05 0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 normalised storage per node α /M

  18. QUESTIONS?

Recommend


More recommend