Highlights of the UC-Irvine Global Trace Gas Monitoring Program (1978-2010) Isobel J. Simpson 1 , Simone Meinardi 1 , Mads P. Sulbaek Andersen 1 , Lori Bruhwiler 2 , F. Sherwood Rowland 1 , Donald R. Blake 1 1 University of California-Irvine, Irvine, CA 2 NOAA ESRL, Boulder, CO isimpson@uci.edu
UC-Irvine whole air sampling (WAS) Canister-based global monitoring • 2-L stainless steel • Conditioned, evacuated • Bellows valve • Sampling period: 1 minute • Sampling pressure: ambient Canister sampling in Rarotonga (21 ⁰S) Nugget Point, New Zealand (46 ⁰S)
Seasonal sampling in the Pacific Basin Seasonal sampling • 80 samples per season • 40-45 locations • 3-week period Global averaging • 16 latitudinal bands - Each with equal volume of air • Global averaging: 1. Average within each band 2. Interpolate box 15 & 16 values 3. Average 16 band averages J F M A M J J A S O N D
Timeline of global trace gases monitored by UC-Irvine Routine seasonal Less frequent Biweekly sampling sampling began sampling in on Norfolk Island NASA funding in 1984 1991-1992 began in 2001 began in 1982 1978 2011 1978: 1984: 1996: 2001: 1988: CH 4 CHCl 3 MeONO 2 Ethane C 2 Cl 4 CFC-11 H-1211 CFC-12 Propane March CFC-113 i -Butane June CH 3 CCl 3 n -Butane September CCl 4 Ethyne December EtONO 2 i -PrONO 2 April August December Norfolk Island (29 ⁰S)
Laboratory analysis at UC-Irvine Gas Chromatography (GC) Flame Ionization Detection (FID) • Sensitive to hydrocarbons Electron Capture Detection (ECD) • Sensitive to halocarbons, RONO 2 Mass Spectrometer Detection (MSD) • Unambiguous compound identification Compound LOD Precision Accuracy Methane 1 ppbv 1% Ethane 3 pptv 1% 5% CFC-11 10 pptv 1% 5% CHCl 3 0.1 pptv 5% 5% C 2 Cl 4 0.01 pptv 2% 5% Laboratory analysis performed by Brent Love MeONO 2 0.01 pptv 3% 10%
UC-Irvine C 1 -C 10 VOC measurements Hydrocarbons Hydrocarbons Halocarbons Halocarbons Hydrocarbons 62. CFC-11 85. CH 2 Br 2 1. Methane 22. 2,3-Dimethylbutane 43. Furan 63. CFC-12 86. CHBr 3 2. Ethane 23. 2+3-Methylpentane 44. Methanol 64. CFC-113 87. Ethylchloride 3. Ethene 24. Cyclopentane 45. Ethanol 65. CFC-114 88. 1,2-DCE 4. Ethyne 25. Methylcyclopentane 46. Acetone 66. H-1211 5. Propane 47. Acetaldehyde 26. Cyclohexane Alkanes 67. H-1301 6. Propene 27. Methylcyclohexane 48. MEK 68. H-2402 Alkenes 7. Propyne 28. Benzene 49. MAC 69. HFC-134a 8. i -Butane 29. Toluene 50. MVK Alkynes 70. HFC-152a 9. n -Butane 30. Ethylbenzene 51. MTBE Cycloalkanes 71. HCFC-22 10. 1-Butene 31. m+p -Xylene Aromatics Alkyl Nitrates 72. HCFC-141b 11. i -Butene 32. o -Xylene Monoterpenes 52. MeONO 2 73. HCFC-142b 12. t -2-Butene 33. Styrene Oxygenates 53. EtONO 2 74. CCl 4 13. c -2-Butene 34. n -Propylbenzene 54. i -PrONO 2 Alkyl nitrates 75. CH 3 CCl 3 14. 1,3-Butadiene 35. 2-Ethyltoluene 55. n -PrONO 2 Sulfur species 76. CH 2 Cl 2 15. i -Pentane 36. 3-Ethyltoluene 56. 2-BuONO 2 77. C 2 HCl 3 Halocarbons 16. n -Pentane 37. 4-Ethyltoluene 57. 2-PeONO 2 78. CHCl 3 17. Isoprene 38. 1,3,5-Trimethylbenzene 58. 3-PeONO 2 79. C 2 Cl 4 18. n -Hexane 39. 1,2,4-Trimethylbenzene 59. 3-Me-2-BuONO 2 80. CH 3 Cl 19. n -Heptane 40. 1,2,3-Trimethylbenzene 81. CH 3 Br 20. n -Octane 41. α -Pinene Sulfur Species 82. CH 3 I 21. n -Nonane 42. β -Pinene 60. OCS 83. CHBr 2 Cl 61. DMS 84. CHBrCl 2
Latitudinal and seasonal trends Latitudinal trends Ethane: Strong fossil fuel/biomass burning sources 2500 • Anthropogenic sources: December 2010 June 2009 2000 - North/South gradient 1500 - CH 4 , C 2 Cl 4 , CFCs, ethane ... 1000 • Oceanic sources : 500 - Tropical maximum - MeONO 2 , EtONO 2 ... 0 90 60 30 0 -30 -60 -90 90 60 30 0 -30 -60 -90 Latitude (degrees) Latitude (degrees) Seasonal trends MeONO 2 : Strong equatorial oceanic source • Many species: major OH sink 80 • Winter maximum December 2003 June 2003 • Summer minimum 60 40 Atmospheric lifetimes: 20 Ethane: 2-3 mo Methyl nitrate: 1 mo 0 90 60 30 0 -30 -60 -90 90 60 30 0 -30 -60 -90 Latitude (degrees) Latitude (degrees)
Global trends of long-lived halocarbons CFC-12 (CCl 2 F 2 ) CFC-11 (CCl 3 F) CH 3 CCl 3 Lifetime: 100 yrs Lifetime: 5 yrs Lifetime: 45 yrs Peak: ~2004 Peak: ~1993 Peak: ~1991 Decline: –2.5 pptv yr -1 Decline: –1.9 pptv yr -1 Decline: –2.2 pptv yr -1 in 2008 in 2008 in 2008 150 550 280 120 260 500 90 240 60 450 220 30 Seasonal global average Seasonal global average Seasonal global average 0 400 200 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 Year Year Year Group CFC-12 (2008)* Group CFC-11 (2008)* Group CH 3 CCl 3 (2008)* UCI 532.6 ppt UCI 244.2 ppt UCI 11.5 ppt NOAA 535.5 ppt NOAA 244.8 ppt NOAA 11.1 ppt AGAGE 537.4 ppt AGAGE 243.4 ppt AGAGE 10.7 ppt *Montzka , S.A. and S. Reimann (Coordinating Lead Authors), Chapter 1 in Scientific Assessment of Ozone Depletion: 2010
Global C 2 Cl 4 trend: Declining 10 Long-term global C 2 Cl 4 decline 8 • 6.3 ± 0.1 pptv in 1989 • 2.5 ± 0.1 pptv in 2009 6 • 3.8 pptv (60%) decline in 20 years 4 20 2 Dec 1988 Seasonal global average Dec 2008 15 0 10 10 Annual global average 8 5 6 0 90 60 30 0 -30 -60 -90 4 Latitude (degrees) 2 2 = 0.949 Tetrachloroethene ( C 2 Cl 4 ) is an industrial y = 481 - 0.238x R 0 solvent (lifetime 3- 4 mo). It is carcinogenic 1985 1990 1995 2000 2005 2010 Year and affects the central nervous system.
Global CHCl 3 trend: Increasing Long-term global CHCl 3 increase 12 Norfolk Island (29 o S) 10 • 9.0 ± 0.3 pptv in 1997 8 • 10.7 ± 0.4 pptv in 2008 • ~ 20% increase in 11 years 6 4 25 Mar 2002 2 20 2 = 0.108 y = -308 + 0.157x R 0 15 14 Annual global average 12 10 10 5 8 0 6 90 60 30 0 -30 -60 -90 Latitude (degrees) 4 2 2 = 0.488 y = -287 + 0.148x R Chloroform ( CHCl 3 ) is an industrial 0 solvent (lifetime 3- 5 mo). It is produced 1995 2000 2005 2010 Year as a precursor to Teflon.
Global CH 4 trend: Increasing, variable Long-term global CH 4 increase Annual CH 4 Trends • 1568 ± 2 ppbv in 1980 • 1792 ± 1 ppbv in 2010 • 225 ppbv (14%) increase in 30 years • Growth in 2010: 5.3 ± 0.7 ppbv yr -1 25 Annual global growth 20 15 10 5 0 -5 -10 1985 1990 1995 2000 2005 2010 2015 Year Methane ( CH 4 ) is a potent greenhouse gas. Its sources include wetlands, rice paddies, fossil fuel and biomass burning (lifetime 9 years).
Global ethane trend: Declining Long-term global ethane decline Annual Ethane Trends • 791 ± 19 pptv in 1986 • 625 ± 10 pptv in 2010 • 170 pptv (21%) decline in 25 years • Growth in 2010: 31 ± 11 pptv yr -1 850 Annual global average 800 750 700 650 600 550 1985 1990 1995 2000 2005 2010 2015 Year Ethane ( C 2 H 6 ) is emitted during fossil fuel production (unburned gas) and by biofuel and biomass burning (lifetime 2- 3 months)
Global ethane trend: Declining Long-term global ethane decline Annual Ethane Trends • 791 ± 19 pptv in 1986 • 625 ± 10 pptv in 2010 • 170 pptv (21%) decline in 25 years • Growth in 2010: 31 ± 11 pptv yr -1 850 20 Ethane 800 CH 4 growth 15 750 10 700 5 650 0 600 550 -5 1985 1990 1995 2000 2005 2010 2015 Year Ethane ( C 2 H 6 ) is emitted during fossil fuel production (unburned gas) and by biofuel and biomass burning (lifetime 2- 3 months)
Global propane trend: Decreasing Long-term global propane decrease 120 Norfolk Island (29 o S) 100 • 158 ± 2 pptv in 1998 2 = 0.0461 y = 2.89e+3 - 1.43x R 80 • 140 ± 2 pptv in 2008 • ~ 10% decrease in 10 years 60 40 1200 Dec 1997 20 1000 Dec 2008 0 800 200 600 Annual global average 400 150 200 100 0 90 60 30 0 -30 -60 -90 Latitude 50 2 = 0.332 Propane ( C 3 H 8 ) is emitted by fossil fuel y = 2.66e+3 - 1.25x R 0 production, biofuel and biomass burning, 1995 2000 2005 2010 and gasoline exhaust (lifetime 1 - 2 weeks) Year
Global ethyne trend: Decreasing Long-term global ethyne decrease 200 Norfolk Island 2 = 0.0257 y = 4.29e+3 - 2.11x R • 124 ± 3 pptv in 1996 150 • 110 ± 2 pptv in 2008 • ~ 11% decrease in 12 years 100 600 50 Dec 1997 500 Dec 2008 0 400 160 300 Annual global average 200 120 100 80 0 90 60 30 0 -30 -60 -90 Latitude 40 2 = 0.342 Ethyne ( C 2 H 2 ) is a tracer of incomplete y = 2.45e+3 - 1.17x R 0 combustion by biomass burning and 1995 2000 2005 2010 urban fossil fuel (lifetime 2- 3 weeks). Year
Conclusions and Acknowledgments Multi-decade record shows significant trends in global trace gas mixing ratios: • Global declines of many halocarbons in response to banning legislation • Global declines of many hydrocarbons due to less venting/flaring; vehicle emission controls • Global increases of CHCl 3 , HCFCs and CH 4 Global declines: Global increases: Halocarbons Halocarbons • CFC-11 • CCl 4 • HCFC-22 • CFC-12 • CH 3 CCl 3 • HCFC-141b • CFC-113 • CFC-114 • HCFC-142b • H-1211 • C 2 Cl 4 • CHCl 3 Alkanes Alkanes • Ethane • Propane • Methane • i -Butane • n -Butane Alkynes Acknowledgments • Ethyne NASA The Gary Comer Foundation Christine Wiedinmyer (NCAR)
Recommend
More recommend