high precision luminosity at e e colliders theory status
play

Highprecision luminosity at e + e colliders: theory status and - PowerPoint PPT Presentation

Highprecision luminosity at e + e colliders: theory status and challenges Guido Montagna Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 Ustron, Matter to the Deepest


  1. High–precision luminosity at e + e − colliders: theory status and challenges Guido Montagna Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 Ustron, Matter to the Deepest Based on work with C.M. Carloni Calame, O. Nicrosini, F. Piccinini et al. G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 1 / 16 Theory review on luminosity

  2. Luminosity at e + e − colliders: Bhabha scattering � Luminosity L : machine parameter underlying any cross section measurement σ = N L � At e + e − colliders, L can be precisely determined using an appropriate reference process N obs L = σ theory N obs : small exp. error σ theory : precise theory input � Best reference process: QED Bhabha scattering e + e + e − e − γ γ e + e + e − e − LEP: small–angle Bhabha Flavor factories: large–angle Bhabha TLEP/ILC/CEPC G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 2 / 16 Theory review on luminosity

  3. The quest for precision Flavor factories ⊲ Luminosity measured with 0 . 1 ÷ 1% precision → g − 2 and ∆ α had ( q 2 ) ⊲ Measurement of σ had − a µ . a exp . − a th . ∼ 3 − 4 σ = ( g − 2) µ / 2 µ µ M exp . − M SM ∼ 2 σ M W : W mass W W LEP ⊲ Luminosity measured with sub–per mille precision ⊲ Measurement of σ 0 had − → number of neutrinos N exp . − 3 ∼ 2 σ (theory dominated) ν G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 3 / 16 Theory review on luminosity

  4. Luminosity and radiative corrections � Precision luminosity − → precision calculations , including QED radiative corrections � QED corrections enhanced by large collinear logarithms L = ln( Q 2 /m 2 e ) α 0 LO NLO αL α 1 2 α 2 L 2 1 2 α 2 L 1 2 α 2 NNLO � ∞ � ∞ h.o. α n n ! L n α n n ! L n − 1 · · · n =3 n =3 L = log( s/m 2 e ) ≃ 15 Large–angle Bhabha at flavor factories L = log( | t | /m 2 e ) ≃ 17 Small–angle Bhabha at LEP and TLEP– Z L = log( | t | /m 2 Small–angle Bhabha at TLEP above t¯ e ) ≃ 20 t threshold � Monte Carlo generators needed for ⊲ realistic simulations ⊲ data–theory comparison under complex event selection criteria G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 4 / 16 Theory review on luminosity

  5. Monte Carlo generators: theoretical ingredients � Monte Carlo ingredients � Fixed–order: complete NLO corrections � QED resummation: collinear Structure Functions, Parton Shower, exclusive exponentiation (YFS) � Matching: NLO ⊗ resummation − → partial inclusion of O ( α 2 L ) photonic corrections at NNLO � Vacuum polarization � Z − exchange diagrams (high energies) set up a. b. c. d. δ NLO − 11 . 61 − 14 . 72 − 16 . 03 − 19 . 57 δ non - log − 0 . 34 − 0 . 56 − 0 . 34 − 0 . 56 NLO δ HO 0 . 39 0 . 82 0 . 73 1 . 44 δ α 2 L 0 . 04 0 . 08 0 . 05 0 . 10 δ VP 1 . 76 2 . 49 4 . 81 6 . 41 Size of radiative corrections (in per cent) to the Bhabha cross section at meson factories from BabaYaga@NLO. Bare e + /e − a. / b. √ s ≃ 1 GeV , E min = 0 . 8 E beam , ξ max = 10 ◦ , 20 ◦ < θ ± < 160 ◦ / 55 ◦ < θ ± < 125 ◦ c. / d. √ s = 10 GeV , E min = 0 . 8 E beam , ξ max = 10 ◦ , 20 ◦ < θ ± < 160 ◦ / 55 ◦ < θ ± < 125 ◦ G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 5 / 16 Theory review on luminosity

  6. Luminosity at flavor factories: generators Luminosity measured with 0 . 1 ÷ 1% precision using large–angle Bhabha (and e + e − → γγ ) as reference process, simulated with two independent generators Generator Processes Theory Accuracy e + e − , γγ, µ + µ − BabaYaga 3.5 QED Parton Shower ∼ 0 . 5% e + e − , γγ, µ + µ − BabaYaga@NLO O ( α ) + QED PS ∼ 0 . 1% e + e − BHWIDE O ( α ) YFS ∼ 0 . 1% e + e − , γγ, µ + µ − MCGPJ O ( α ) + coll. SF ∼ 0 . 2% Reference MC – Babayaga@NLO � BabaYaga 3.5/BabaYaga@NLO http://www2.pv.infn.it/˜hepcomplex/babayaga.html Used by BaBar, Belle, BESIII, CLEO, KEDR and KLOE. Carloni Calame et al. , 2000 / 2006 � BHWIDE http://placzek.web.cern.ch/placzek/bhwide/ Used by BaBar, BESIII, KEDR, KLOE and SND. Jadach, Placzek and Ward, 1997 � MCGPJ http://cmd.inp.nsk.su/˜sibid/ Used by CMD, Belle and SND. Arbuzov et al. , 2005 / Eidelman et al. , 2011 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 6 / 16 Theory review on luminosity

  7. Sources of uncertainty and Bhabha at NNLO in QED � Sources of uncertainty : ⊲ Technical precision: bugs, approximations in numerical algorithms ... ⊲ Theoretical precision: vacuum polarization (parametric, driven by σ had ) and incomplete NNLO corrections � NNLO QED corrections to Bhabha available − → benchmark for MC accuracy � Photonic corrections (dominant contribution) Penin, 2005 / 2006 Becher and Melnikov, 2007 � Electron loop corrections Bonciani et al. , 2004 / 2005 Actis et al. , 2007 � Heavy fermion and hadronic loops Becher and Melnikov, 2007 / Bonciani et al. , 2008 Actis et al. , 2008 / K¨ uhn and Uccirati, 2009 � Soft+Virtual corrections to hard bremsstrahlung Jadach, Ward et al. , 1996, 2001 Actis et al. , 2010 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 7 / 16 Theory review on luminosity

  8. Comparison to NNLO: accuracy of BabaYaga@NLO � NNLO Photonic (Penin) Carloni Calame et al. , 2006 5 NF=1 4 photonic ⊲ δσ . = σ NNLO Penin − σ NNLO fit 3 BabaYaga@NLO fit 2 δσ ≤ 0 . 2 � σ LO 1 δσ (nb) ⊲ δσ/σ LO ∝ α 2 L and infrared–safe 0 -1 -2 -3 -4 -5 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 0.01 m e (GeV) � Leptonic and hadronic pairs Carloni Calame et al. , 2011 √ s σ BY (nb) S e + e − [ � ] S lep [ � ] S had [ � ] S tot [ � ] KLOE 1.020 NNLO -3.935(5) -4.472(5) 1.02(4) -3.45(4) BabaYaga 455.71 -3.445(2) -4.001(2) 0.876(5) -3.126(5) BES 3.650 NNLO -1.469(9) -1.913(9) –1.3(1) -3.2(1) BabaYaga 116.41 -1.521(4) -1.971(4) -1.071(4) -3.042(5) BaBar 10.56 NNLO -1.48(2) -2.17(2) -1.69(8) -3.86(8) BabaYaga 5.195 -1.40(1) -2.09(1) -1.49(1) -3.58(2) Belle 10.58 NNLO -4.93(2) -6.84(2) -4.1(1) -10.9(1) BabaYaga 5.501 -4.42(1) -6.38(1) -3.86(1) -10.24(2) ⊲ BabaYaga@NLO accuracy (well) below 1 � G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 8 / 16 Theory review on luminosity

  9. Luminosity at flavor factories: total theoretical uncertainty Updated from: Actis et al. , EPJ C66 (2010) 585 arXiv:0912.0749 Source of unc. (%) 1–2 GeV BESIII BaBar/Belle Vacuum Polarization 1 | δ VP | [Jegerlehner] — 0.01 0.03 | δ VP | [HMNT] 0.02 0.01 0.02 NNLO | δ α 2 photonic | 2 0.02 0.02 0.02 | δ α 2 pairs | 3 0.03 0.02 0 . 03 ÷ 0 . 07 | δ α 2 SV , H | 4 0.05 / 0.03 0.05 / 0.03 0.05 / 0.03 | δ α 2 HH | — — — | δ total | quadrature 0 . 07 / 0 . 05 0 . 06 / 0 . 04 ∼ 0 . 07 ÷ 0 . 09 ⊲ Comparable to luminosity theoretical uncertainty at LEP ⊲ In proximity of ψ / Υ ’s resonances, accuracy deteriorates: L affected by σ had uncertainty! 1From ∆ α had ( q 2 ) ± δ had , δ had returned by VP parameterization. 2Carloni Calame et al. , 2006: BabaYaga@NLO vs. NNLO photonic by Penin 3Carloni Calame et al. , 2011: BabaYaga@NLO vs. NNLO (leptonic and hadronic) pairs by DESY Zeuthen – Katowice 4Estimated from LEP studies by Jadach, Ward et al. Conservative, WG Report / Less conservative, Jadach et al. 1999, 2001 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 9 / 16 Theory review on luminosity

  10. TLEP and luminosity The TLEP Design Study Working Group , M. Bicer et al. JHEP 1401 (2014) 164, arXiV:1308.6176 TLEP : e + e − circular collider at c.m. energies from 90 to 350 GeV for SM precision tests after the Higgs discovery ⊲ √ s ≃ 90 GeV: Z pole (Tera Z ) ⊲ √ s ≃ 160 GeV: W W threshold (Oku W ) ⊲ √ s ≃ 240 GeV: ZH production threshold ⊲ √ s ≃ 350 GeV: t¯ t threshold (MegaTop) LEP experience will be the benchmark for future theoretical work, with accuracy at 10 − 4 level G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 10 / 16 Theory review on luminosity

Recommend


More recommend