high energy monitoring of seyfert galaxies the case of
play

High-energy monitoring of Seyfert galaxies: the case of NGC 5548 - PowerPoint PPT Presentation

High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593 Francesco Ursini Univ. Grenoble - Alpes, IPAG Universit Roma T re The Extremes of Black Hole Accretion Madrid, June 8 2015 NGC 5548 Object of a


  1. High-energy monitoring � of Seyfert galaxies: the case of � NGC 5548 and NGC 4593 Francesco Ursini Univ. Grenoble - Alpes, IPAG � Università Roma T re The Extremes of Black Hole Accretion � Madrid, June 8 2015

  2. NGC 5548 Object of a The logs of the simultaneous XMM-Newton, NuSTAR and/or INTEGRAL ob- multiwavelength servations of NGC 5548 during our campaign. campaign in 2013 � Obs. Satellites Obs. Id. Start time (UTC) Net exp. yyyy-mm-dd (ks) 1 XMM-Newton 0720110401 2013-06-30 38 The nucleus appeared 10700010001 2013-06-29 62 INTEGRAL 2 XMM-Newton 0720110601 2013-07-11 37 obscured by a clumpy NuSTAR 60002044002/3 2013-07-11 50 10700010002 2013-07-11 50 INTEGRAL stream of ionized gas - a 3 XMM-Newton 0720110701 2013-07-15 37 INTEGRAL 10700010003 2013-07-15 50 disc wind? (Kaastra+15; 4 XMM-Newton 0720111101 2013-07-23 38 NuSTAR 60002044005 2013-07-23 50 see talk by M. Cappi) � INTEGRAL 10700010004 2013-07-23 52 5 Chandra 16314 2013-09-10 120 NuSTAR 60002044006 2013-09-10 50 7 high-energy observations 6 0720111501 2013-12-20 38 XMM-Newton NuSTAR 60002044008 2013-12-20 50 with XMM, NuSTAR and 7 0720111601 2014-02-04 38 XMM-Newton 11200110001 2014-01-17 94 INTEGRAL INTEGRAL (Ursini+15) 11200110002 2014-01-22 40 11200110003 2014-02-09 30

  3. NGC 5548: high-energy view Obs. 2: Broad − band fit, residuals and best − fit model. 1 Counts s − 1 keV − 1 XMM − Newton/pn 0.1 INTEGRAL 0.01 NuSTAR/FPMA NuSTAR/FPMB 10 − 3 10 − 4 good 5 constraints 0 � � 2 − 5 on both � − 10 the primary keV 2 Ph/(cm 2 s keV) power law 0.01 10 − 3 and the � 10 − 4 reflection 10 − 5 component 10 − 6 1 10 100 Energy (keV)

  4. reflection component 0.015 0.015 0.015 0.015 PEXMON Ec (keV) PEXMON Cut − off energy (keV) PEXMON Norm. 5 4 Te 6 1000 1000 1000 1000 PEXMON Norm. 2 0.01 0.01 0.01 0.01 6 2 5×10 − 3 5×10 − 3 5×10 − 3 5×10 − 3 5 100 100 100 100 4 1.5 1.5 1.5 1.5 2 2 2 2 2.5 2.5 2.5 2.5 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.8 2 2 2 2 2.2 2.2 2.2 2.2 PEXMON Photon Index PEXMON Photon Index PEXMON Photon index PEXMON Photon index

  5. Cut-off energy (keV) PEXMON Ec (keV) Cut − off Energy (keV) PEXMON Cut − off energy (keV) 100 100 100 100 100 100 100 200 200 200 200 200 200 200 300 300 300 300 300 300 300 400 400 400 400 400 400 400 500 500 500 500 500 500 500 100 100 100 100 1000 1000 1000 1000 primary power law 7 PEXMON Photon index 1.5 1.5 1.5 1.5 Photon index 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5 6 4 PEXMON Photon Index 6 3 Photon Index 2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2 2 2 2 1 4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 5 2 reflection component Te 2.5 2.5 2.5 2.5 PEXMON Norm. PEXMON Norm. 5×10 − 3 5×10 − 3 5×10 − 3 5×10 − 3 0.01 0.01 0.01 0.01 0.015 0.015 0.015 0.015 1.4 1.4 1.4 1.4 PEXMON Photon index 1.6 1.6 1.6 1.6 5 PEXMON Photon Index 1.8 1.8 1.8 1.8 4 6 2 2 2 2 2 2.2 2.2 2.2 2.2

  6. reflection component 0.015 0.015 0.015 0.015 PEXMON Ec (keV) PEXMON Cut − off energy (keV) PEXMON Norm. 5 4 Te 6 1000 1000 1000 1000 PEXMON Norm. 2 0.01 0.01 0.01 0.01 6 2 5×10 − 3 5×10 − 3 5×10 − 3 5×10 − 3 5 100 100 100 100 4 1.5 1.5 1.5 1.5 2 2 2 2 2.5 2.5 2.5 2.5 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.8 2 2 2 2 2.2 2.2 2.2 2.2 PEXMON Photon Index PEXMON Photon Index PEXMON Photon index PEXMON Photon index 500 500 500 500 500 500 500 Cut-off energy (keV) Compton parameter primary power law 2013 campaign 2007 Suzaku 400 400 400 400 400 400 400 1.0 1 2 1997 BeppoSAX Compton parameter y + Cut − off Energy (keV) 300 300 300 300 300 300 300 3 + 4 0.8 5 200 200 200 200 200 200 200 7 0.6 + 100 100 100 100 100 100 100 6 y-kT of the hot corona 0.4 100 200 300 400 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 kT e (keV) Photon Index Temperature (keV) Photon index

  7. NGC 4593: XMM/NuSTAR monitoring program Past observations by BeppoSAX (1998: Guainazzi+98), XMM (2002: Reynolds+04, Brenneman+07), Suzaku (2007: Markowitz&Reeves09) show: a strong reflection hump above 10 keV and a prominent, non- relativistic Fe K α line (truncated disc? distant material?) � a significant soft X-ray excess below 1 keV (Comptonization?) � a lower limit for the high- energy cut-off of 150 keV

  8. NGC 4593: XMM/NuSTAR monitoring program Past observations by BeppoSAX (1998: Guainazzi+98), XMM (2002: Reynolds+04, Brenneman+07), Suzaku (2007: Markowitz&Reeves09) show: a strong reflection hump above 10 keV and a prominent, non- 5 × 20 ks joint observations in early 2015 relativistic Fe K α line The logs of the joint XMM-Newton and NuSTAR observations of NGC 4593. (truncated disc? distant Obs. Satellites Obs. Id. Start time (UTC) Net exp. material?) � yyyy-mm-dd (ks) 1 XMM-Newton 0740920201 2014-12-29 16 60001149002 22 NuSTAR a significant soft X-ray excess 2 0740920301 2014-12-31 17 XMM-Newton below 1 keV (Comptonization?) � 60001149004 22 NuSTAR 3 0740920401 2015-01-02 17 XMM-Newton NuSTAR 60001149006 21 a lower limit for the high- 4 XMM-Newton 0740920501 2015-01-04 15 NuSTAR 60001149008 23 energy cut-off of 150 keV 5 XMM-Newton 0740920601 2015-01-06 21 60001149010 21 NuSTAR

  9. XMM/pn and NuSTAR/FPMA+FPMB light curves and hardness ratios XMM/pn 0.5 − 2 keV 12.5 Significant flux � Counts/s 10.0 7.5 variability 5.0 2.5 XMM/pn 2 − 10 keV 4.0 Counts/s 3.0 2.0 Significant spectral � Hardness ratio XMM/pn 2 − 10 keV/0.5 − 2 keV 0.45 0.40 variability in the � 0.35 soft band (0.5-10 keV) 0.30 NuSTAR 3 − 10 keV 1.6 Counts/s 1.2 0.8 0.75 NuSTAR 10 − 50 keV Counts/s 0.60 0.45 0.30 Hardness ratio NuSTAR 10 − 50 keV/3 − 10 keV … not much in the � 0.6 0.4 hard band (3-50 keV) 0.2 1 × 10 5 2 × 10 5 3 × 10 5 0 Time (s)

  10. XMM/pn and NuSTAR/FPMA+FPMB light curves and hardness ratios XMM/pn 0.5 − 2 keV 12.5 Counts/s 10.0 7.5 5.0 2.5 XMM/pn 2 − 10 keV 4.0 Counts/s 3.0 2.0 Each spectrum is � Hardness ratio XMM/pn 2 − 10 keV/0.5 − 2 keV 0.45 fitted separately; � 0.40 we divide the first � 0.35 0.30 observation into � NuSTAR 3 − 10 keV 1.6 Counts/s two intervals 1.2 0.8 0.75 NuSTAR 10 − 50 keV Counts/s 0.60 0.45 0.30 Hardness ratio NuSTAR 10 − 50 keV/3 − 10 keV 0.6 0.4 0.2 1 × 10 5 2 × 10 5 3 × 10 5 0 Time (s)

  11. XMM/pn and NuSTAR/FPMA data fitted with a power law 10 − 2 Obs. 1 − I Obs. 1 − II Obs. 2 Counts s − 1 keV − 1 cm − 2 Obs. 3 10 − 3 Obs. 4 Obs. 5 10 − 4 10 − 5 10 − 6 2.0 2.0 Data/model ratio Data/model ratio 1.5 1.5 1.0 1.0 0.5 0.5 1 1 5 5 10 10 50 50 Energy (keV) Energy (keV)

  12. Baseline model: � warm abs.*(soft excess + cut-off power law + reflection) bbody xillver A Fe free Obs. 2: Broad − band fit, residuals and best − fit model 0.01 Counts/(s keV cm 2 ) 10 − 3 XMM − Newton/pn NuSTAR/FPMA NuSTAR/FPMB 10 − 4 10 − 5 5 � � 2 0 − 5 keV 2 Ph/(cm 2 s keV) 0.01 10 − 3 weak hump � (R ~ 0.2-0.3) 10 − 4 1 10 Energy (keV)

  13. Fe K � line flux and EW, primary flux (3 − 10 keV), photon index Fe K � line flux and EW, primary flux (3 − 10 keV), photon index 4.8 × 10 − 5 4.8 × 10 − 5 (A) A Fe ' 2-3 Line flux Fe K � line flux Fe K � line flux 4.2 × 10 − 5 4.2 × 10 − 5 3.6 × 10 − 5 3.6 × 10 − 5 3.0 × 10 − 5 3.0 × 10 − 5 2.4 × 10 − 5 2.4 × 10 − 5 250 250 (B) Line EW Fe K � line EW Fe K � line EW 200 200 150 150 100 100 (C) 2.1 × 10 − 11 2.1 × 10 − 11 F(3 − 10 keV) F(3 − 10 keV) 1.8 × 10 − 11 1.8 × 10 − 11 1.5 × 10 − 11 1.5 × 10 − 11 F(3-10 keV) 1.2 × 10 − 11 1.2 × 10 − 11 (D) 1.85 1.85 1.80 1.80 1.75 1.75 � � 1.70 1.70 Γ 1.65 1.65 1.60 1.60 1 − I 1 − I 1 − II 1 − II 2 2 3 3 4 4 5 5 Observation number Observation number

  14. Anticorrelation between EW of the Fe K � line and primary flux Anticorrelation between EW of the Fe K � line and primary flux 4.8 × 10 − 5 4.8 × 10 − 5 (A) 4.2 × 10 − 5 4.2 × 10 − 5 Fe K � Flux Fe K � Flux 3.6 × 10 − 5 3.6 × 10 − 5 3.0 × 10 − 5 3.0 × 10 − 5 2.4 × 10 − 5 2.4 × 10 − 5 250 250 (B) p -value = 0.009 ρ = − 0 . 92 200 200 Fe K � EW Fe K � EW 150 150 100 100 1.2 × 10 − 11 1.2 × 10 − 11 1.5 × 10 − 11 1.5 × 10 − 11 1.8 × 10 − 11 1.8 × 10 − 11 2.1 × 10 − 11 2.1 × 10 − 11 F(3 − 10 keV) F(3 − 10 keV)

  15. Correlation between soft excess and primary flux Correlation between soft excess and primary flux 2.1 × 10 − 11 2.1 × 10 − 11 Flux(3 − 10 keV) Flux(3 − 10 keV) 1.8 × 10 − 11 1.8 × 10 − 11 ρ = 0 . 97 1.5 × 10 − 11 1.5 × 10 − 11 p -value = 0.001 1.2 × 10 − 11 1.2 × 10 − 11 4.5 × 10 − 11 4.5 × 10 − 11 Flux(10 − 50 keV) Flux(10 − 50 keV) 4.0 × 10 − 11 4.0 × 10 − 11 ρ = 0 . 93 3.5 × 10 − 11 3.5 × 10 − 11 p -value = 0.007 3.0 × 10 − 11 3.0 × 10 − 11 1.5 × 10 − 12 1.5 × 10 − 12 2.5 × 10 − 12 2.5 × 10 − 12 3.5 × 10 − 12 3.5 × 10 − 12 4.5 × 10 − 12 4.5 × 10 − 12 5.5 × 10 − 12 5.5 × 10 − 12 Soft Excess Flux Soft Excess Flux

Recommend


More recommend