High-Contrast Imaging Of Protoplanetary Disks: Probing The Formation Sites Of (some) Gas Giant Planets Sascha P . Quanz (ETH Zurich) PhD Students: Henning Avenhaus Antonio Garufi Maddalena Reggiani Image credit: ESO/L. Calçada
Gas giant planets do exist at wide orbital separations... HD95086 HR8799 beta Pictoris GJ 504 Marois et al, 2008, 2010; Lagrange et al. 2010; Rameau et al. 2013a,b; Kuzuhara et al. 2013
...and their peak occurrence rate is somewhere >4 AU From RV planet searches: # Jupiter & cumulative rate [%] 20 • # of gas giant planets strongly increases with period 15 • Early-type stars have higher 10 frequency of giant planets within 3 AU (~26 +9 -8 % vs. ~10% for solar- type stars) and also increasing for 5 longer periods 0 1.0 10.0 100.0 1000. Period [days] Mayor et al. 2011 (arxiv:1109.2497); Bowler et al. 2010; also Johnson et al. 2007a,b, 2010
Polarimetric Differential Imaging (PDI) probes relevant disk regions Disk surface layer is probed! Q Q r Wollaston tangential prism Light from Detector Data reduction star radial U U r Image credit: H. Avenhaus
PDI is not a new technique... HD169142 HD169142 TW Hya 1’’ -3 1’’ 1’’ 3 2 µ m P AB Aur 2 1 Arcsec 0 -1 -2 N AB Aur E -3 3 2 1 0 -1 -2 -3 3 2 1 0 Kuhn et al. 2001; Apai et al. 2004; Hales et al. 2006; Oppenheimer et al. 2008; Perrin et al. 2009
...but in the last 3 years a lot of new results came out � 150 � 100 � 50 0 50 100 150 HD100546 -0.5 0 0.5 1 HD169142 HD97048 N a) AB Aur 1" E Dec. offset (arcsecond) 0.5" Distance (arcsec) 0" Dip � � 0.5" � AO feature � 1" N � E � 1" � 0.5" 0" 0.5" 1" Distance (arcsec) 0.5 0 -0.5 -1 HD163296 SR21 MWC758 MWC480 0.5’’ 0.4’’ Aur Hashimoto et al. 2011; Quanz et al. 2011,2012; Kusakabe et al, 2012; Grady et al. 2013; Folette et al. 2013; Garufi et al. 2014
...but in the last 3 years a lot of new results came out SAO206462 PDS70 2MJ1604-2130 HD135344B Sz91 SAO206462 HD142527 HD142527 HD135344B Aur Muto et al. 2013; Garufi et al. 2013; Avenhaus et al. 2014; Canovas et al. 2013; Tsukagoshi et al. 2014; Mayama et al 2012; Hashimoto et a;. 2012
Have learned anything about planet formation? 4 case studies: SAO206462 LkCa 15 HD100546 HD169142 � 150 � 100 � 50 0 50 100 150 N a) 150 1" E 100 0.5" Distance (arcsec) 50 0" 0 Dip � � 0.5" � AO feature � 1" � 0.5" � 1" � 0.5" 0" 0.5" 1" Distance (arcsec) 0 planets (yet) 1 planet 2(?) planets 2(?) planets Aur
Is there a planet hiding in the disk of SAO206462? Different cavity sizes for different observing wavelengths (i.e., grain sizes) PDI images in the NIR • Inner cavity <28 AU • Strong spiral arm structure Muto et al. 2013; Garufi et al. 2013
Is there a planet hiding in the disk of SAO206462? Different cavity sizes for different observing wavelengths (i.e., grain sizes) PDI images in the NIR ALMA / SMA image • Inner cavity <28 AU • Inner cavity ~40-45 AU • Strong spiral arm structure • Some brightness asymmetry Muto et al. 2013; Garufi et al. 2013; Perez et al. 2014; also, Brown et al. 2009
Is there a planet hiding in the disk of SAO206462? Dust filtration due to the presence of a planet might explain different cavity sizes U See also poster from Ke Zhang Garufi et al. 2013; e.g., Pinilla et al. 2012; Zhu et al. 2012; de Juan Ovelar et al. 2013
Is there a planet hiding in the disk of SAO206462? NACO PDI image scaled to ALMA resolution ALMA / SMA image
The planet candidate in the LkCa 15 disk Not PDI! Scattered light Subaru Ks • Inner cavity <40-50 AU • Eccentric cavity? • Strong forward scattering Thalmann et al. 2011,2014
The planet candidate in the LkCa 15 disk Not PDI! Scattered light Subaru Ks SMA 850 micron + Keck aperture masking • Inner cavity <40-50 AU • Cavity with comparable radius • Companion candidate in the cavity • Eccentric cavity? • Strong forward scattering See also poster from Andrea Isella Thalmann et al. 2011,2014; Kraus & Ireland 2012; Andrews et al. 2011
HD169142 - sequential planet formation? H band PDI image • Inner cavity <25 AU • Annular gap ~40-70 AU Quanz et al. 2013
HD169142 - sequential planet formation? DEC offset (arcsec) 7 mm VLA H band PDI image 0.8 VLA CnB+B+A VLA 7 mm 7 mm VLT H − Band 0.4 inner gap inner gap (cavity) (cavity) + + 0 ring ring 29 AU outer gap outer gap − 0.4 ? ? (c) (d) − 0.8 − 0.8 − 0.8 0.8 0.4 0 − 0.4 0.8 0.4 0 − 0.4 RA offset (arcsec) • ~5 sigma ‘overdensity’ - planet? • Inner cavity <25 AU • Annular gap ~40-70 AU Quanz et al. 2013; Osorio et al. 2014
HD169142 - sequential planet formation? L band high-contrast image H band PDI image • Inner cavity <25 AU • L band point source • 7mm source not detected in L’ • Not (yet) detected in J with GPI • Annular gap ~40-70 AU • Not detected with MagAO Quanz et al. 2013; Reggiani et al. 2014; also Biller et al. 2014
HD100546 - sequential planet formation again? H band PDI image 50 au 0.5" • Inner cavity <14 AU • Brightness asymmetry Avenhaus et al. 2014; Quanz et al. 2011
HD100546 - sequential planet formation again? H band PDI image High dispersed M band spectroscopy (B) E. CO Emission 2 0 0 6 v = + 6 ± 1 k m s -1 E 2003: Black p = 4 7 ± 1 0 o � 2006: Red PA=140 o A = 5 o E o f N P � 2010: Blue 2003 2010 � =0 o 2013: Green v p = � 1±1 km s -1 PA= � 40 o E of N � =97±7 o PA= 60 o E of N 2013 v p = � 6±1 km s -1 � =133±10 o PA= 10 5 o E of N 50 au 0.5" • Inner cavity <14 AU • Fundamental CO ro-vibrational lines • Spectro-astrometric signal • Brightness asymmetry • Hot-band lines static consistent with orbiting body • v=1-0 P26 line varies Avenhaus et al. 2014; Quanz et al. 2011; Brittain et al. 2013,2014
HD100546 - sequential planet formation again? H band PDI image L and M band high contrast images 50 au 0.5" • Inner cavity <14 AU • Point source + plus extended emission at 0.48’’ • Brightness asymmetry • Very red: L=13.9 mag; M=13.3 mag; K>15.4 mag • T eff ~ 1030 K; R = 6 R Jupiter ; L = 2.3*10 -4 L Sun Avenhaus et al. 2014; Quanz et al. 2011, 2013, under review
HD100546 - sequential planet formation again? H band PDI image ALMA dust continuum data for HD100546 50 au 0.5" • Inner cavity <14 AU • Large grains are confined to within 50-60 au • Brightness asymmetry • Gas extends out to >350 au Avenhaus et al. 2014; Quanz et al. 2011; Pineda et al. 2014
HD100546 - sequential planet formation again? H band PDI image ALMA dust continuum data for HD100546 50 au (c) (d) 0.5" • Inner cavity <14 AU • Brightness asymmetry • Double-ring model fits data best Avenhaus et al. 2014; Quanz et al. 2011; Walsh et al. 2014
Take home messages • Polarimetric Differential Imaging (PDI) allows us to spatially resolve regions in protoplanetary disks as close as 0.1” (~10 au) and with a resolution of 10 au; ideal to study potential formation sites of gas giant planets • In a number of disks, PDI revealed unexpected variety of disk structures (gaps, cavities, spiral arms) part of which could be immediately related to recent / ongoing planet formation • In a few targets we have growing observational evidence that planet(s) may (have) form(ed) in particular where various datasets (e.g., PDI, (sub-)mm imaging, high-contrast imaging) are combined
What’s next? • Increase the sample of resolved disks with PDI using Gemini/GPI and VLT/SPHERE • Combine PDI images with ALMA data with same spatial resolution to get 3D picture of protoplanetary disks • Derive the “big picture” messages from PDI results; a lot of in depth studies of individual objects so far, but more overarching results need to be synthesized • Use spatially resolved information at multiple wavelengths to determine dust properties on disk surface as a function of wavelength
Thank you Image credit: ESO/L. Calçada
Recommend
More recommend