hgcal test beam data analysis wire chamber efficiency and
play

HGCal Test Beam Data Analysis: Wire Chamber Efficiency and - PowerPoint PPT Presentation

HGCal Test Beam Data Analysis: Wire Chamber Efficiency and Electron/Pion Separation Wihan Adi - Summer Student 2018 Supervisors: Thorben Quast & Erica Brondolin Motivation Part I DWCs are used in test beams thanks to high e ffi ciency


  1. HGCal Test Beam Data Analysis: Wire Chamber Efficiency and Electron/Pion Separation Wihan Adi - Summer Student 2018 Supervisors: Thorben Quast & Erica Brondolin

  2. Motivation Part I • DWCs are used in test beams thanks to high e ffi ciency and spatial resolution • Justifying DWC e ffi ciency claim of >90% and resolution claim of about 0.2mm [1] 31 August 2018 � 2

  3. Delay Wire Chamber Source: [1] • Voltage create avalanche near anode 
 • 0.2mm resolution claimed [1] Current is induced in corresponding cathode • Linear region 8 x 8 [1] cm 2 • Anode gives start signal • Amplitude depends on signal distance then 
 X − position = ( timeRight − timeLeft ) × slope horizontal + Offset horizontal converted via TDC Y − position = ( timeUp − timeDown ) × slope vertical + Offset vertical 31 August 2018 � 3

  4. DWC configuration Data sets • CALICE AHCAL beam tests 
 May 2018 • Ten pion runs with 
 ~10 to ~160GeV • More than 80k events 
 per energy DWC4 & 3 
 in CERN SPS H2 Source: Thorben Quast CLICdp presentation 29 August 2018 31 August 2018 � 4

  5. Efficiency Studies Position alignment Assume particles’ tracks to be straight line and plot residual distribution Offset Distribution of DWC1 in x direction Offset Distribution of DWC2 in x direction Offset Distribution of DWC3 in x direction Offset Distribution of DWC4 in x direction Entries Entries Entries Entries 2200 3000 2000 3500 pre-correction pre-correction pre-correction pre-correction 2000 post-correction post-correction post-correction post-correction 1800 offset_x_1 offset_x_1 offset_x_2 offset_x_2 offset_x_3 offset_x_3 offset_x_4 offset_x_4 3000 2500 1800 - - - - Mean Mean 0.8654 0.8654 Mean Mean 1.022 1.022 Mean Mean 0.5222 0.5222 Mean Mean 0.3636 0.3636 1600 Std Dev 0.8151 Std Dev 0.8151 Std Dev 0.8498 Std Dev 0.8498 Std Dev 0.7054 Std Dev 0.7054 Std Dev 0.6602 Std Dev 0.6602 offset_x_1_corrected offset_x_1_corrected offset_x_2_corrected offset_x_2_corrected offset_x_3_corrected offset_x_3_corrected offset_x_4_corrected offset_x_4_corrected 1600 2500 - - - - Mean Mean 0.0244 0.0244 Mean Mean 0.03348 0.03348 Mean Mean 0.01583 0.01583 Mean Mean 0.01003 0.01003 1400 2000 Std Dev 0.8132 Std Dev 0.8132 Std Dev Std Dev 0.8436 0.8436 Std Dev 0.703 Std Dev 0.703 Std Dev Std Dev 0.6522 0.6522 1400 1200 2000 1200 0.364mm - 0.865mm - 0.522mm 1.022mm 1500 1000 1000 0.024mm 0.015mm -0.010mm -0.033mm 1500 800 800 1000 600 1000 600 400 400 500 500 200 200 0 0 0 0 - - - - - - - - - - - - - - - - - - - - 5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 Offset[mm] Offset[mm] Offset[mm] Offset[mm] 31 August 2018 � 5

  6. Efficiency Studies # hit _ registered • E ffi ciency Algorithm: E = # hit • How to get the #hit of DWC_i, i ∈ {1,2,3,4}? 1. Require three points from the other DWCs 2. Fit a line through three points from the other DWCs 3. Extra-/interpolate a point at the location of DWC_i 4. Check if the point is within a rectangular region of DWC_i (8 x 8 cm^2) 5. If yes increase denominator by 1 31 August 2018 � 6

  7. First, fit a line Then extra-/ interpolate this line to DWCx and increase #hit Do not increase #hit # hit _ registered E = # hit 31 August 2018 � 7

  8. # hit _ registered • Now we have corrected the DWCs for misalignment E = # hit and determined #hit • How to determine #hit_registered? 1. For every increment of #hit check whether DWC_i registered any signal 2. If yes check whether the signal is within a certain tolerance radius from the predicted coordinates DWC is aligned & #hit increased Is the measured coordinates within tolerance? 31 August 2018 � 8

  9. Results 1. Resolution of DWC is sub mm 31 August 2018 � 9

  10. Results 1. Resolution of DWC is sub mm DWC1 Corrected Residual Distribution in y Direction DWC2 Corrected Residual Distribution in y Direction DWC3 Corrected Residual Distribution in y Direction DWC4 Corrected Residual Distribution in y Direction Entries Entries Entries Entries 0.14 pdgID 211 10 GeV pdgID 211 10 GeV pdgID 211 10 GeV pdgID 211 10 GeV pdgID 211 20 GeV pdgID 211 20 GeV pdgID 211 20 GeV pdgID 211 20 GeV 0.14 0.12 pdgID 211 40 GeV pdgID 211 40 GeV pdgID 211 40 GeV pdgID 211 40 GeV 0.14 pdgID 211 80 GeV pdgID 211 80 GeV pdgID 211 80 GeV pdgID 211 80 GeV 0.12 pdgID 211 100 GeV pdgID 211 100 GeV pdgID 211 100 GeV pdgID 211 100 GeV 0.12 pdgID 211 120 GeV pdgID 211 120 GeV pdgID 211 120 GeV pdgID 211 120 GeV 0.12 0.1 pdgID 211 160 GeV pdgID 211 160 GeV pdgID 211 160 GeV pdgID 211 160 GeV pdgID 211 50 GeV pdgID 211 50 GeV pdgID 211 50 GeV pdgID 211 50 GeV 0.1 pdgID 211 30 GeV pdgID 211 30 GeV pdgID 211 30 GeV pdgID 211 30 GeV 0.1 0.1 pdgID 211 60 GeV pdgID 211 60 GeV pdgID 211 60 GeV pdgID 211 60 GeV 0.08 Sigma 0.47 mm Sigma 0.46 mm Sigma 0.71 mm Sigma 0.61 mm Sigma 0.43 mm Sigma 0.43 mm Sigma 0.50 mm Sigma 0.43 mm 0.08 0.08 Sigma 0.28 mm Sigma 0.30 mm Sigma 0.41 mm Sigma 0.34 mm 0.08 Sigma 0.26 mm Sigma 0.28 mm Sigma 0.34 mm Sigma 0.29 mm 0.06 Sigma 0.31 mm Sigma 0.33 mm Sigma 0.48 mm Sigma 0.40 mm 0.06 Sigma 0.26 mm Sigma 0.28 mm Sigma 0.31 mm Sigma 0.27 mm 0.06 0.06 Sigma 0.26 mm Sigma 0.28 mm Sigma 0.30 mm Sigma 0.26 mm Sigma 0.27 mm Sigma 0.30 mm Sigma 0.38 mm Sigma 0.32 mm 0.04 Sigma 0.29 mm Sigma 0.32 mm Sigma 0.44 mm Sigma 0.37 mm 0.04 0.04 Sigma 0.27 mm Sigma 0.29 mm Sigma 0.36 mm Sigma 0.31 mm 0.04 0.02 0.02 0.02 0.02 0 0 0 0 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 Offset[mm] Offset[mm] Offset[mm] Offset[mm] 31 August 2018 � 9

Recommend


More recommend