heavy quark diffusion from the lattice
play

Heavy Quark Diffusion from the Lattice Viljami Leino Technische - PowerPoint PPT Presentation

Heavy Quark Diffusion from the Lattice Viljami Leino Technische Universitt Mnchen, t30f In collaboration with: Nora Brambilla, Saumen Datta, Miguel Escobedo, Peter Petreczky, Antonio Vairo, and Peter Vander Griend From Euclidean spectral


  1. Heavy Quark Diffusion from the Lattice Viljami Leino Technische Universität München, t30f In collaboration with: Nora Brambilla, Saumen Datta, Miguel Escobedo, Peter Petreczky, Antonio Vairo, and Peter Vander Griend From Euclidean spectral densities to real-time physics 15.03.2019 CERN

  2. Outline • Introduction • Transport coefficients from in medium quarkonium dynamics • Lattice measurement • Conclusions 0 / 27

  3. Introduction 2 v 0 + + • Charm and bottom quarks much 0.4 D , D , D* average, | y |<0.8 ALICE {EP, | |>0.9} , = 5.02 TeV v ∆ η s 2 NN {EP, | ∆ η |>0} , = 2.76 TeV v s 2 NN heavier than RHIC/LHC tempera- 0.3 PRL 111 (2013) 102301 ± , | |<0.5, = 2.76 TeV π y s tures NN 0.2 {SP, | ∆ η |>0.9} , JHEP 06 (2015) 190 v 2 v {EP, | ∆ η |>2} , PLB 719 (2013) 18 2 • Can be used to probe early time 0.1 physics 0 Syst. from data 30 − 50% Pb − Pb • Experimental results for nuclear Syst. from B feed-down − 0.1 0 2 4 6 8 10 12 14 16 18 20 22 24 suppression factor R AA and elliptic (GeV/ ) p c T s (T) TD flow ν 2 differ from simple perturba- α s pQCD LO Lattice QCD =0.4 pQCD LO α S π Ding et al. 2 tive estimates 30 Banerjee et al. Kaczmarek et al. • Both R AA and ν 2 can be calculated F i x V = - M a t r T 20 from diffusion constant D of heavy QPM (Catania) - LV D-meson (TAMU) quark in medium D-meson (Ozvenchuk) PHSD 10 T-Matrix V=U QPM (Catania) - BM Duke (Bayesian) • D can be tuned to match experi- MC@sHQ AdS/CFT mental results 0 1 1.5 2 T/T c Figures from: ALICE PRL120 (2017), X. Dong CIPANP (2018) 1 / 27

  4. Heavy Quark in medium • Heavy quark energy doesn’t change much in collision with a thermal quark √ E k ∼ T , p ∼ MT ≫ T • HQ momentum is changed by random kicks from the medium • Successive collisions with medium are uncorrelated → Brownian motion • The physics can be simulated with Langevin dynamics dp i � ξ ( t ) ξ ( t ′ ) � = κδ ( t − t ′ ) dt = − η D p i + ξ i ( t ) , • κ : strength of stochastic interaction: property of medium • The drag coefficient η D = κ/ ( 2 MT ) • Relaxation time τ R = 1 /η D • In position space � x 2 ( t ) � = 6 Dt with D = 2 T 2 /κ Moore et.al. PRC71 (2005), Caron-Huot et.al. JHEP02 (2008) 2 / 27

  5. Perturbation theory • Perturbation theory has poor convergence 0.6 NLO 0.5 LO truncated LO 0.4 g 4 T 3 0.3 κ 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 g • Non-perturbative methods needed Moore et.al. PRC71 (2005), Caron-Huot et.al. JHEP02 (2008) 3 / 27

  6. Quarkonium in medium • Quarkonium characterized by energy-scales: mass M, Bohr radius a 0 , and binding Energy E • M ≫ 1 a 0 ≫ E • Environment at energy scale π T and correlation time τ E ∼ 1 /π T • Evolution of system characterized by relaxation time τ R 1 • Assume a 0 ≫ π T and π T ≫ E 1 → τ R ∼ 0 ( π T ) 3 and τ R ≫ τ E a 2 • With these assumptions quarkonium can be described by Limbland equation • The Limbland model depends only on two transport coefficients: κ and γ • κ turns out to be the heavy quark diffusion coefficient • γ is correction to the heavy quark-antiquark potential Brambilla et.al. PRD96 (2017), Brambilla et.al. PRD97 (2018) 4 / 27

  7. Transport Coefficients from in Medium Quarkonium Dynamics 5 / 27

  8. The singlet self-energy in pNRQCD � t Σ S ( t ) = r i r j d t ′ � gE a , i ( t , 0 ) gE a , j ( t ′ , 0 ) � = r i r j κ ij ( t ) + i ˆ γ ij ( t ) � � ˜ 2 N C 2 t 0 • In large time limit, assuming time translation invariance: � ∞ 1 gE a , i ( t , 0 ) gE a , j ( 0 , 0 ) � � κ = d t � � 6 N c 0 � ∞ γ = − i gE a , i ( t , 0 ) gE a , j ( 0 , 0 ) � � d t � � 6 N c 0 • Where κ is just the heavy quark momentum diffusion coefficient Brambilla et.al. PRD96 (2017), Brambilla et.al. PRD97 (2018) 6 / 27

  9. In medium mass shift and width • From previous slide it follows: r 2 κ = Σ s + Σ † s = − 2 Im ( − i Σ s ) r 2 γ = − i Σ s + i Σ † s = 2 Re ( − i Σ s ) • The self-energies provide the in medium induced mass shifts δ M s and widths Γ s • For 1S Coulombic quarkonium state: δ M ( 1 S ) = 3 Γ( 1 S ) = 3 a 2 2 a 2 0 κ 0 γ • For Coulombic system: Solve a 0 from self-consistency equation with 1-loop 3 flavor running coupling: a 0 = 2 / [ MC F α s ( 1 / a 0 )] Brambilla et.al. PRD96 (2017), Brambilla et.al. PRD97 (2018) 7 / 27

  10. Scales • Use recent lattice determination of δ M ( 1 S ) and Γ( 1 S ) (Aarts et.al. JHEP11 (2011), Kim et.al. JHEP11 (2018)) • Available lattice data for J /ψ at T = 251MeV and Υ( 1 S ) at T = 251MeV and T = 407MeV • Use masses M b = 4 . 78GeV and M c = 1 . 67GeV • Scale lattice masses to above values • The binding energies are E Υ( 1 S ) = − 0 . 1 GeV and E J /ψ = − 0 . 24 GeV 1 1 • The Bohr radiuses are a 0 = 0 . 84 GeV for J /ψ and a 0 = 1 . 5 GeV for Υ( 1 S ) • Scale hierarchies E ≪ π T ≪ 1 / a 0 satisfied 8 / 27

  11. κ Measurement 2 3 S 1 (vector) Upsilon 1.5 Γ/ T 1 0.5 0 0 0.5 1 1.5 2 T/T c • The thermal width in (Kim et.al. JHEP11 (2018)) preliminary and taken as lower bound. • For upper bound use slightly older result (Aarts et.al. JHEP11 (2011)) • T / T c ≈ 2, T c = 220 MeV • Un-quenched determination of κ from lattice data Brambilla et.al. TUM-EFT122/18 (2019), Fig from: Aarts et.al. JHEP11 (2011) 9 / 27

  12. κ Result − 0 . 24 � κ T 3 � 4 . 2 • Un-quenched determination of κ from lattice data Brambilla et.al. TUM-EFT122/18 (2019) 10 / 27

  13. γ Measurement 0 0 Δ m [MeV] (J/ ψ 3 S 1 ) -50 -50 Δ m [MeV] ( Υ 3 S 1 ) -100 -100 -150 -150 n=8 charmonium 3 S 1 n=4 bottomonium 3 S 1 [BR T>0] calib. [BR T=0 trunc.] [BR T>0] calib. [BR T=0 trunc.] -200 -200 140 160 185 223 251 140 160 185 223 251 333 407 T [MeV] T [MeV] • Use results from (Kim et.al. JHEP11 (2018)) • Two distinct mass shifts J /ψ and Υ( 1 S ) • Use two different temperatures T = 251MeV and T = 407MeV • Unquenched measurement Brambilla et.al. TUM-EFT122/18 (2019), Figs from: Kim et.al. JHEP11 (2018) 11 / 27

  14. γ Results − 3 . 8 � γ T 3 � − 0 . 7 • First non-perturbative determination of γ Brambilla et.al. TUM-EFT122/18 (2019) 12 / 27

  15. Transport Coefficients from lattice euclidean correlator 13 / 27

  16. Directly from HQ current correlator • Operator of interest: HQ current correlator ¯ Q γ i Q • problematic observable: • Quite insensitive to D (Teaney PRD74 (2006), Petreczky EPJC62 (2008)) • Narrow transport peak around zero in spectral function • better approach needed 0.05 G vc low ( τ )/T 3 D=1/(2 π T) 0.045 0.04 0.035 0.03 0.025 τ T 0.25 0.3 0.35 0.4 0.45 0.5 fig: Petreczky EPJC62 (2008) 14 / 27

  17. Euclidean Correlator derivation • In the M → ∞ limit we can define: � ˆ � ∞ 3 ˆ J i ( t , x ) J i ( 0 , 0 ) � � � 1 ��� 1 d t e i ω ( t − t ′ ) � M →∞ M 2 d 3 x κ = lim lim , kin 3 T χ d t d t 2 ω → 0 −∞ i = 1 J i ( x ) = ¯ • Where ˆ ψ ( x ) γ µ ψ ( x ) is the heavy quark current • The heavy quark force in static limit: M d ˆ J i � � φ † E i φ − θ † E i θ = d t Q operators, E i color-electric field • Where φ , θ are HQ and H ¯ • Now the euclidean correlator is defined as: 3 � 1 �� � � � � � d 3 x φ † gE i φ − θ † gE i θ φ † gE i φ − θ † gE i θ G E ( τ ) = − lim ( τ, x ) ( 0 , 0 ) 3 T χ M →∞ i = 1 Following Caron-Huot et.al. JHEP04 (2009) 15 / 27

  18. Euclidean correlator • After simplifying the propagators of φ and θ in M → ∞ : 3 G E ( τ ) = − 1 � Re Tr [ U ( β, τ ) gE i ( τ, 0 ) U ( τ, 0 ) gE i ( 0 , 0 )] � � 3 � Re Tr [ U ( β, 0 )] � i = 1 • Related to the Diffusion coefficient by: N f = 0, T = 3 T c 4.0 2 ) O(g � � β � ∞ cosh 2 − τ ω 4 ) d ω O(g 3.0 G E ( τ ) = π ρ ( ω ) sinh βω 0 2 2 ρ E / ω T 2.0 2 T κ = lim ω ρ ( ω ) ω → 0 1.0 • In general inversion problem is ill-defined 0.0 0.0 1.0 2.0 3.0 4.0 5.0 ω / T • No ω → 0 transport-peak like with direct HQ-current measurement Following Caron-Huot et.al. JHEP04 (2009), fig from: Burnier et.al. JHEP08 (2010) 16 / 27

  19. Multilevel algorithm N t periodic periodic x t N tsl • Algorithm for quenched simulations • At large N t observables like Polyakov loop can have poor signal • Idea: Divide the lattice to temporal slices of size N tsl • update each sublattice independently keeping boundaries fixed • Average over different boundary configurations → Allows reaching better statistics with less configurations Lüscher et.al. JHEP09 (2001) 17 / 27

  20. Euclidean � EE � correlator periodic periodic − − x t τ 3 G E ( τ ) = − 1 � Re Tr [ U ( β, τ ) gE i ( τ, 0 ) U ( τ, 0 ) gE i ( 0 , 0 )] � � 3 � Re Tr [ U ( β, 0 )] � i = 1 • Renormalization: Z E = 1 + g 2 0 × 0 . 137718569 . . . + O ( g 4 0 ) (Christensen et.al. PLB02 (2016)) 18 / 27

Recommend


More recommend