hadron spectra in strong magnetic fields
play

Hadron Spectra in Strong Magnetic Fields M.A. Andreichikov, Yu.A. - PowerPoint PPT Presentation

Hadron Spectra in Strong Magnetic Fields M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP 2015-1-27 Talk by M.A. Andreichikov M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong


  1. Hadron Spectra in Strong Magnetic Fields M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP 2015-1-27 Talk by M.A. Andreichikov M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 1 / 47

  2. QCD & QED in Strong Magnetic Field Strong magnetic fields - hadrons internal structure changes Spin and Isospin symmetries are broken eB ∼ σ ∼ 10 19 Gauss - string tension Strong Magnetic Fields in Nature(in Gauss): √ eB = a Bohr ) - 2 . 35 · 10 9 Atomic ( l B = 1 / Schwinger ( eB = m 2 e 3 ) - 4 . 4 · 10 13 Surface of magnetars - 10 14 RHIC and LHC - 10 18 − 10 20 M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 2 / 47

  3. Systems in Mafnetic Field Positronium (Shabad, Usov) - Bethe-Salpeter approach Hydrogen (..., Khriplovich, Popov-Karnakov, Vysotsky-Godunov-Machet) ρ -meson (..., Mueller, Chernodub) Pion gas (Smilga, Agasian) Quark matter (Kharzeev-McLerran-Polikarpov-Zakharov..., Andreichikov-Kerbikov) Neutral and charged quark-antiquark systems ( ρ , π ) (Andreichikov-Kerbikov-Orlovsky-Simonov) Neutral and charged baryons (in progress) β -decay (Matese, O’Connel, Studenikin) Excitons (solid state physics) (Gorkov, Dzyaloshinskii) The common features: 3d → 1d dimension reduction Coulomb-type interaction screening Sphere transforms to ellipsoid for ground state. M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 3 / 47

  4. Papers related to the Problem: Yu. Simonov “Relativistic path integral and relativistic Hamiltonians in QCD and QED” , PRD 88, 025028 (2013) Yu. Simonov “Spin interactions in mesons in strong magnetic field” , PRD 88, 053004 (2013) M. Andreichikov, B. Kerbikov, V. Orlovsky, Yu. Simonov “Meson spectrum in strong magnetic fields” , PRD 87, 094029 (2013) M. Andreichikov, V. Orlovsky, Yu. Simonov “Asymptotic Freedom in Strong Magnetic Fields” , PRL 110, 162002 (2013) A. Badalian, Yu. Simonov “Magnetic moments of mesons” , PRD 87, 074012 (2013) M. Andreichikov, B. Kerbikov, V. Orlovsky, Yu. Simonov “Neutron in strong magnetic field” , PRD 89, 074033 (2014) V. Orlovsky, Yu. Simonov “Nambu-Goldstone mesons in strong magnetic field” , JHEP 2013:9:136 (2013) Yu. Simonov “Magnetic focusing in atomic, nuclear and hadronic processes” , arXiv:1308.5553 (2013) M. Andreichikov, B. Kerbikov, Yu. Simonov “Magnetic Field Focusing of Hyperfine Interaction in Hydrogen” , arXiv:1304.2516 (2013) M. Andreichikov, B. Kerbikov, Yu. Simonov “Quark-Antiquark System in Ultra-Intense Magnetic Field” , arXiv:1210.0227 (2012) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 4 / 47

  5. Plan of the Talk Green’s functions : QCD & QED in magnetic field (for mesons), correlators and relativistic Hamiltonian. Relativistic Hamiltonians : ◮ dynamics, confinement, magnetic moments ◮ wave function factorization ◮ zero modes Perturbative corrections : ◮ self-energy corrections ◮ color Coulomb & q ¯ q screening in nagnetic field ◮ hyperfine interactions, magnetic “focusing” in Hydrgen atom and “magnetic collapse” Meson mass spectrum. Baryon features (OPE, spin-isospin splitings) Neutron mass spectrum. Conclusions and discussion. M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 5 / 47

  6. Feynman-Fock-Schwinger Formalism: A ( e ) - EM field.) Single quark Green’s function ( ˆ A - gluon field, ˆ D i ( x , y ) = ( m i + ˆ ∂ − ig ˆ A − ie i ˆ A ( e ) ) − 1 xy = ( m i + ˆ D ( i ) ) − 1 xy Feynman-Fock-Schwinger representation � ∞ D i ( x , y ) = ( m i − ˆ σ ( x , y ) = ( m i − ˆ ds i ( Dz ) xy e − K i Φ ( i ) D i ) D i ) G i ( x , y ) 0 m i - quark mass, s i - proper time � 2 � s i � d z ( i ) i s i + 1 µ K i = m 2 d τ i 4 d τ i 0 M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 6 / 47

  7. Gauge Fields in FSF Formalism:: Field-dependent term: � x � x � � Φ ( i ) A µ dz ( i ) A ( e ) µ dz ( i ) σ ( x , y ) = P A P F exp ig µ + ie i × µ y y �� s i � × exp d τ i σ µν ( gF µν + eB µν ) 0 (4 × 4) structures for gluon and EM field: � � � � 0 σ H σ E σ B σ µν F µν = , σ µν B µν = 0 σ E σ H σ B If only magnetic field B � = 0 - euclidean action - no negative eigenvalues (Stablisation theorem) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 7 / 47

  8. QQ Green’s Function: G q 1 ¯ q 2 ( x , y ) = � j Γ ( x ) j Γ ( y ) � And the path integral for it is ( ˆ T contains gamma matrices trace): � ∞ � ∞ ds 2 ( Dz (1) )( Dz (2) ) � ˆ q 2 ( x , y ) = TW σ ( A ) � A × G q 1 ¯ ds 1 0 0 � x � x � s 1 � s 2 � � A ( e ) µ dz (1) A ( e ) µ dz (2) × exp − ie 2 + e 1 d τ 1 ( σ B ) − e 2 d τ 2 ( σ B ) ie 1 µ µ y y 0 0 × exp( − K 1 − K 2 ) Gluon contribution( Wilson loop ) after averaging over stochastic vacuum background: � τ E � � σ | z 1 − z 2 | − 4 α s �� � W σ ( A ) � A = exp − dt E 3 | z 1 − z 2 | 0 Confinement + OGE (color Coulomb) (Minimal area for the Wilson loop) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 8 / 47

  9. Omega Formalism: Monotonous time t E ( τ ) = x 4 + τ s T provides: z 4 ( τ ) = t E ( τ ) + ∆ z 4 ( τ ) , ω i = T , T = | x − y | 2 s i Green’s function with omega-variables (after averaging) � ∞ d ω 1 d ω 2 q 2 ( x , y ) = T � � q 2 T � � � Tr ( ˆ Te − H q 1 ¯ G q 1 ¯ x � y � � ω 3 / 2 ω 3 / 2 8 π 0 1 2 Mass spectrum from Hamiltonian: (stationary point anaysis) H ψ = M n ψ, ∂ M n ( ω i ) ˆ = 0 ∂ω i Omegas are quark “dynamical” masses M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 9 / 47

  10. Hamiltonian for Q ¯ Q Neutral Meson 1 1 ( p 1 − e A ( z 1 )) 2 + ( p 2 + e A ( z 2 )) 2 + σ | z 1 − z 2 | + H q ¯ q = 2 ω 1 2 ω 1 + m 2 1 + ω 2 1 − e σ (1) B + m 2 2 + ω 2 2 + e σ (2) B 2 ω 1 2 ω 2 Dynamics (mass & wave function) is defined by nonperturbative part: H q ¯ q Ψ n = M n Ψ n Perturbative effects are treated as corrections : M total = M n + � Ψ | V OGE | Ψ � + � Ψ | V SS | Ψ � + ∆ M SE Color Coulomb term V Coul , Self-Energy V SE (Wilson loop integration) and Spin-spin interaction V SS are treated as perturbation. M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 10 / 47

  11. Insight from classical equations: m 1 = m 2 , q 1 = − q 2 domain (simplest case) m d 2 x 1 d t 2 = f 12 + q d x 1 d t × B ; m d 2 x 2 d t 2 = − f 12 − q d x 2 d t × B New coordinates R , η : R = x 1 + x 2 ; η = x 1 − x 2 2 Transformed equations: d � 2 m d R � d t − q η × B = 0; d t d � m d η � d t − q R × B = f 12 2 d t M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 11 / 47

  12. Quantum case in m 1 = m 2 , q 1 = − q 2 domain (ansatz): Canonical transformation: R = x 1 + x 2 P = − i ∂ π = − i ∂ ∂ η = ˆ p 1 − ˆ p 2 ; η = x 1 − x 2 ; ˆ ∂ R = ˆ p 1 + ˆ p 2 ; ˆ 2 2 Hamiltonian: � 2 � 2 � � 1 P − 1 + 1 π − 1 ˆ ˆ H = 2 q B × η ˆ 2 q B × R + V ( η ) 4 m m Integral of motion: P + 1 ˆ I = ˆ 2 q B × η ; [ˆ I , ˆ H ] = 0 Wavefunction ansatz (Bilocal phase): Ψ( R , η ) = φ ( η ) e i PR − i 1 2 q ( B × η ) R References: J.E.Avron, I.W.Herbst, B.Simon, Ann. Phys. 114 , 431 (1978) D.Koller, M.Malvetti, H.Pilkuhn, Phys. Lett. A 132 , 5 (1988) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 12 / 47

  13. Quantum case in m 1 = m 2 , q 1 = − q 2 domain (solution): Harmonic oscillator problem: ∂ 2 φ 4 m ( P − q B × η ) 2 φ − 1 1 ∂ η 2 + V ( η ) φ = E φ m E η 2 – full factorization: External oscillator potential: V ( η ) = m ω 2 4 m + P 2 x + P 2 + P 2 � � n z + 1 1 + α + σ 1 y z E = Ω( n x + n y + 1) + ω E 2 4 m 4 β � qB z � 2 � Ω = ω E (1 + α ); α = 2 m ω E Remark: In Coloumb potential case V ( η ) = − 1 | η | the rotational symmetry References: M.Taut, Phys.Rev. A 48 , 5 (1994) (Isotropic oscillator + Coloumb) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 13 / 47

  14. More complicated case m 1 � = m 2 , q 1 = − q 2 domain (ansatz): Canonical transformation: R = m 1 x 1 + m 2 x 2 ; η = x 1 − x 2 ; m 1 + m 2 m 1 m 2 ; s = m 1 − m 2 µ = m 1 + m 2 m 1 + m 2 π + µ π + µ ˆ ˆ ˆ p 1 = ˆ P ; ˆ p 2 = − ˆ P m 2 m 1 Hamiltomian: � 2 � 2 H = 1 � π − 1 2 B × R + s 1 � P − 1 ˆ ˆ ˆ 2 B × η + 2 B × η + V ( η ) 2 µ 2 M Integral of motion: P + 1 ˆ I = ˆ 2 B × η Wavefunction ansatz: Ψ( R , η ) = φ ( η ) e i PR − i 1 2 ( B × η ) R References: J.E.Avron, I.W.Herbst, B.Simon, Ann. Phys. 114 , 431 (1978) M.A. Andreichikov, Yu.A. Simonov, B.O. Kerbikov, V.D. Orlovsky ITEP Hadron Spectra in Strong Magnetic Fields 2015-1-27 14 / 47

Recommend


More recommend