h matrix theory and applications
play

H-matrix theory and applications Maja Nedovi University of Novi - PowerPoint PPT Presentation

MatTriad 2015, Coimbra H-matrix theory and applications Maja Nedovi University of Novi Sad, Serbia joint work with Ljiljana Cvetkovi Contents H-matrices and SDD-property Benefits from H-subclasses Breaking the SDD


  1. MatTriad 2015, Coimbra H-matrix theory and applications Maja Nedovi ć University of Novi Sad, Serbia joint work with Ljiljana Cvetkovi ć

  2. Contents H-matrices and SDD-property � Benefits from H-subclasses • Breaking the SDD � Additive and multiplicative conditions • Partitioning the index set • Recursive row sums • Nonstrict conditions •

  3. H-matrices and SDD-property A complex matrix A=[a ij ] nxn is an SDD- matrix if for each i from N it holds that ∑ ( ) = a ii > r i A a ij Deleted row sums j ∈ N , j ≠ i Lévy-Desplanques: Lev nonsingular

  4. H-matrices and SDD-property A complex matrix A=[a ij ] nxn is an SDD- matrix if for each i from N it holds that ∑ ( ) = a ii > r i A a ij j ∈ N , j ≠ i A complex matrix A=[a ij ] nxn is an H-matrix if and only if there exists Lev a diagonal nonsingular matrix W such that AW is an SDD matrix.

  5. H-matrices and SDD-property A complex matrix A=[a ij ] nxn is an SDD- matrix if for each i from N it holds that ∑ ( ) = a ii > r i A a ij H j ∈ N , j ≠ i HH SDD

  6. H-matrices and SDD-property A complex matrix A=[a ij ] nxn is an SDD- matrix if for each i from N it holds that ∑ ( ) = a ii > r i A a ij H j ∈ N , j ≠ i HH SDD ?

  7. Subclasses of H-matrices & diagonal scaling characterizations Benefits: 1. Nonsingularity result covering a wider matrix class 2. A tighter eigenvalue inclusion area (not just for the observed class) 3. A new bound for the max-norm of the inverse for a wider matrix class 4. A tighter bound for the max-norm of the inverse for some SDD matrices 5. Schur complement related results (closure and eigenvalues) 6. Convergence area for relaxation iterative methods 7. Sub-direct sums 8. Bounds for determinants

  8. Breaking the SDD Recursive row sums SDD Additive and Non-strict multiplicative conditions conditions Partitioning the index set

  9. Breaking the SDD Recursive row sums SDD Additive and Non-strict multiplicative conditions conditions Partitioning the index set

  10. Breaking the SDD Recursive row sums SDD Additive and Non-strict multiplicative conditions conditions Partitioning the index set

  11. Breaking the SDD Recursive row sums SDD Additive and Non-strict multiplicative conditions conditions Partitioning the index set

  12. Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Breaking the SDD Varga, R.S. : Ger š gorin and his circles (2004) Recursive row sums SDD Additive and Non-strict Ostrowski, multiplicative conditions Pupkovi conditions Partitioning the index set

  13. Gao, Y.M., Xiao, H.W. (1992), Varga, R.S. (2004), Dashnic, L.S., Zusmanovich, M.S. (1970), Kolotilina, l. Yu.(2010), Breaking the SDD Cvetkovi ć , Lj., Nedovi ć , M. (2009), (2012), (2013). Recursive row sums SDD Additive and Non-strict Ostrowski, multiplicative conditions Pupkovi conditions Partitioning the S-SDD, index set PH

  14. Mehmke, R., Nekrasov, P. (1892), Gudkov, V.V. (1965), Szulc, T. Breaking the SDD (1995), Li, W. (1998), Cvetkovi ć , Lj., Kosti ć , V., Nedovi ć , M. (2014). Recursive Nekrasov- row sums matrices SDD Additive and Non-strict Ostrowski, multiplicative conditions Pupkovi conditions Partitioning the S-SDD, index set PH

  15. O. Taussky (1948), Beauwens (1976), Szulc,T. (1995), Li, W. (1998), Breaking the SDD Varga, R.S. (2004) Cvetkovi ć , Lj., Kosti ć , V. (2005) Recursive Nekrasov- row sums matrices SDD Additive and IDD, CDD Non-strict Ostrowski, multiplicative S-IDD, S-CDD conditions Pupkovi conditions Partitioning the S-SDD, index set PH

  16. O. Taussky (1948), Beauwens (1976), Szulc,T. (1995), Li, W. (1998), Breaking the SDD Varga, R.S. (2004) Cvetkovi ć , Lj., Kosti ć , V. (2005) H Recursive Nekrasov- row sums matrices SDD Additive and IDD, CDD Non-strict Ostrowski, multiplicative S-IDD, S-CDD conditions Pupkovi conditions Partitioning the S-SDD, index set PH

  17. I Additive and multiplicative conditions Ostrowski-matrices multiplicative condition: ( ) ( ) a a r A r A > ii jj i j Pupkov-matrices additive condition: a min{max { a }, r ( ) A } > ii j i ji i ≠ ( ) ( ) a a r A r A + > + ii jj i j Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Varga, R.S. : Ger š gorin and his circles (2004)

  18. II Partitioning the index set S-SDD -matrices Given any complex matrix A=[a ij ] nxn S and given any nonempty proper subset S of N, A is an S-SDD matrix if S ( ) a r A a , i S ∑ > = ∈ S ii i ij j S , j i ∈ ≠ ( ) ( ) S S S S ( ) ( ) ( ) ( ) a r A a r A r A r A , − − > ii i jj j i j i S , j S ∈ ∈ Gao, Y.M., Xiao, H.W. LAA (1992) Cvetkovi ć , Lj., Kosti ć , V., Varga, R. ETNA (2004)

  19. II Partitioning the index set S-SDD - matrices A matrix A=[a ij ] nxn is an S-SDD matrix iff there exists a matrix W in W s � such that AW is an SDD matrix. ⎧ ⎫ W S ( ) W diag w , w ,..., w : w 0 for i S and w 1 for i S = = = γ > ∈ = ∈ ⎨ ⎬ 1 2 n i i ⎩ ⎭ γ . . S γ SDD 1 1 N\S . . 1

  20. Diagonal scaling characterization & Scaling matrices γ . . S γ SDD 1 1 N\S . . 1 We choose parameter from the interval : ( ( ) ( ) ) , I A , A γ = γ γ 1 2 S S ( ) ( ) a r A r A − jj j ( ) 0 A max i ( ) , ( ) A min . ≤ γ = γ = 1 S 2 a r A S r ( ) A i S − j S ∈ ∈ ii i j

  21. Diagonal scaling characterization & Scaling matrices S-SDD SDD

  22. Diagonal scaling characterization & Scaling matrices γ S-SDD T-SDD γ γ γ SDD γ γ γ

  23. Diagonal scaling characterization & Scaling matrices ∑ -SDD γ S-SDD T-SDD γ γ γ SDD γ γ γ

  24. Diagonal scaling characterization & Scaling matrices ∑ -SDD γ γ γ γ SDD γ γ γ

  25. Eigenvalue localization { } S ( ) S ( ) A z C : z a r A , i S , Γ = ∈ − ≤ ∈ i ii i { ( ) } ( ) S ( ) S ( ) S ( ) S ( ) ( ) S V A z C : z a r A z a r A r A r A , = ∈ − − − − ≤ ij ii i jj j i j i S , j S . ∈ ∈ ⎛ ⎞ ⎛ ⎞    ( ) S ( ) S ( ) S ( ) . A C A A V A ⎜ ⎟ ⎜ ⎟ σ ⊆ = Γ ⎜ ⎟ i ij ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ i S i S , j S ∈ ∈ ∈ Cvetkovi ć , L., Kosti ć , V., Varga R.S.: A new Ger š gorin-type eigenvalue inclusion set ETNA, 2004. Varga R.S.: Ger š gorin and his circles, Springer, Berlin, 2004.

  26. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α ( ) ( ) A α , A 0 Schur α α The Schur complement of a complex nxn matrix A, with respect to a proper subset α of index set N={1, 2, … , n}, is denoted by A/ α and defined to be: ( ) 1 A A A ( , ) ( ) ( A ) − ( , ) α − α α α α α

  27. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α SDD ( ) ( ) A α , A 0 Schur α α Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

  28. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α ( ) ( ) A α , A 0 Schur α α SDD Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

  29. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α Ostr ( ) ( ) A α , A 0 Schur α α Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979) Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

  30. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α ( ) ( ) A α , A 0 Schur α α Ostr Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979) Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

  31. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α $ ( ) ( ) A α , A 0 Schur α α Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979) Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997) Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

  32. Schur complement ( ) ( ) ( ) ( ) A A α , A A α , α α α α ( ) ( ) $ A α , A 0 Schur α α Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979) Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997) Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

  33. Schur complements of S-SDD ( ) ( ) ( ) ( ) A A α , A A α , α α α α ∑ -SDD ( ) ( ) A α , A 0 Schur α α Cvetkovi ć , Lj., Kosti ć , V., Kova č evi ć , M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008) Liu, J., Huang, Y., Zhang, F. : The Schur complements of generalized doubly diagonally dominant matrices. LAA (2004)

Recommend


More recommend