h idden p hotons
play

H IDDEN P HOTONS WITH AXION - SEARCH TECHNOLOGY Jeremy Mardon - PowerPoint PPT Presentation

S EARCHING FOR H IDDEN P HOTONS WITH AXION - SEARCH TECHNOLOGY Jeremy Mardon Stanford Institute for Theoretical Physics Jeremy Mardon, SITP , Stanford K EY P OINTS Hidden Photons (a.k.a. dark photons, paraphotons) are a possible


  1. S EARCHING FOR H IDDEN P HOTONS 
 WITH AXION - SEARCH TECHNOLOGY Jeremy Mardon Stanford Institute for Theoretical Physics Jeremy Mardon, SITP , Stanford

  2. K EY P OINTS “Hidden Photons” (a.k.a. dark photons, paraphotons) 
 are a possible 5th-force carrier 
 and dark-matter candidate Experimental searches are 
 extremely similar to axion searches …but are easier because: i) No static B-field needed ii) stellar cooling constraints are weaker Jeremy Mardon, SITP , Stanford

  3. ⬇ ⬇ ⬇ H IDDEN P HOTONS THEORY: a 5th force : a copy of Electromagnetism , but with — small hidden-photon mass (= finite range) — small coupling ε (the “kinetic mixing” parameter) Long-range Stores energy in Couples to charged non-relativistic particles waves/particles New light particle Modification Dark matter Cosmo/astro of EM effects Jeremy Mardon, SITP , Stanford

  4. H IDDEN P HOTON C ONSTRAINTS EXCLUDED 
 (independent of contribution to dark matter) ν = m γ ' / 2 π kHz MHz GHz THz PHz 1 10 - 3 CMB ( γ→γ ' ) precision EM 10 - 6 stellar ε ⨯ ( ρ γ ' / ρ cdm ) 1 / 2 production 10 - 9 CMB ( γ ' →γ ) 10 - 12 Allowed region for hidden-photon 10 - 15 dark matter 10 - 18 peV neV μ eV meV eV keV m γ ' EXCLUDED AS DARK MATTER Arias et al 1201.5902 Jeremy Mardon, SITP , Stanford

  5. L IGHT -T HROUGH -W ALLS S EARCHES FOR H IDDEN P HOTONS Jeremy Mardon, SITP , Stanford

  6. L IGHT - THROUGH - WALLS CAVITY SEARCH The hidden photon is an unshieldable addition to Electromagnetism Jaeckel & Ringwald 0707.2063 — tune 2 cavities to same frequency — drive one cavity, pick up signal in well-shielded 2nd cavity — large resonant enhancement (up to Q~10 10 ?) Early-stage experiments: Povey et al 1003.0964 ADMX 1007.3766 CROWS 1310.8098 Jeremy Mardon, SITP , Stanford

  7. R EACH frequency Published bound Hz kHz MHz GHz CROWS collaboration 1 Jupiter Earth 1310.8098 0.1 CROWS limit using longitudinal mode H this work L CROWS published limit 10 - 2 Coulomb 10 - 3 Reanalysis including 10 - 4 longitudinal mode 10 - 5 Graham, J. M., Rajendran & CMB 10 - 6 Future high - Q microwave cavity experiment HB Zhao ∂ 10 - 7 1407.4806 Sun 10 - 8 10 - 9 ALPS II 10 - 10 Potential reach 10 - 11 proposal with Sami Tantawi 10 - 12 & Vinod Bharadwaj 10 - 13 10 - 16 10 - 15 10 - 14 10 - 13 10 - 12 10 - 11 10 - 10 10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4 10 - 3 m g ' @ eV D — large potential reach — corresponding axion search is weak ( g a γγ < 10 -7 GeV ) 1310.8098 — longitudinal mode is important in optimizing setup 1407.4806 Jeremy Mardon, SITP , Stanford

  8. S EARCHING FOR H IDDEN P HOTON D ARK M ATTER Jeremy Mardon, SITP , Stanford

  9. H IDDEN PHOTONS AS DARK MATTER Light boson as dark matter — classical field — oscillation frequency ω =m A’ — coherence time ~10 6 / ω pseudoscalar vector axion hidden photon — scalar field — vector field — no direction — points in random direction Pospelov Ritz & Voloshin 0807.3279 Nelson & Scholtz 1105.2812 Jeremy Mardon, SITP , Stanford

  10. H IDDEN P HOTON DM: RESONANT SEARCHES A “hidden electric field” that penetrates shielding — E’ ≈ √ ρ DM ≈ 2000 V/m Has fixed frequency — ω =m γ ’ , δω / ω =10 -6 Can excite an electromagnetic resonator electromagnetic cavities — ADMX is automatically sensitive 
 Redondo et al 1201.5902 Jeremy Mardon, SITP , Stanford

  11. H IDDEN P HOTON DM: RESONANT SEARCHES ν = m γ ' / 2 π A “hidden electric field” that penetrates shielding kHz MHz GHz THz PHz 1 — E’ ≈ √ ρ DM ≈ 2000 V/m 10 - 3 CMB ( γ→γ ' ) precision Has fixed frequency EM 10 - 6 — ω =m γ ’ , δω / ω =10 -6 stellar ε ⨯ ( ρ γ ' / ρ cdm ) 1 / 2 production 10 - 9 Can excite an electromagnetic resonator CMB ( γ ' →γ ) ADMX 10 - 12 ADMX 10 - 15 Xenon 10 / 100 electromagnetic cavities 10 - 18 — ADMX is automatically sensitive 
 peV neV μ eV meV eV keV Redondo et al 1201.5902 m γ ' Jeremy Mardon, SITP , Stanford

  12. H IDDEN P HOTON DM: RESONANT SEARCHES A “hidden electric field” that penetrates shielding — E’ ≈ √ ρ DM ≈ 2000 V/m Has fixed frequency — ω =m γ ’ , δω / ω =10 -6 Can excite an electromagnetic resonator LC circuits electromagnetic cavities — much wider and lower 
 — ADMX is automatically sensitive 
 frequency range than cavities Redondo et al 1201.5902 Redondo et al 1201.5902 Jeremy Mardon, SITP , Stanford

  13. DM R ADIO : A TUNABLE LC- CIRCUIT FOR HIDDEN - PHOTON DARK MATTER “A Radio for Hidden-Photon Dark Matter Detection” Saptarshi Chaudhuri, Peter Graham, Kent Irwin, J. M., Surjeet Rajendran & Yue Zhao arXiv:1411.7382 Jeremy Mardon, SITP , Stanford

  14. E XPERIMENTAL SETUP Metal box to shield backgrounds oscillating E’ field L C Tunable resonant LC circuit Read out with SQUID Jeremy Mardon, SITP , Stanford

  15. T HE SIGNAL INSIDE A SHIELD conduction electrons in wall Metal box to shield respond to backgrounds cancelling observable combination E+ ε E’ …but generating real oscillating B field inside the E’ shield B ~ ε (m γ ’ R) × 10 -5 T oscillates at ω = m γ ’ Jeremy Mardon, SITP , Stanford

  16. THE DM RADIO COLLABORATION Experiment Kent Irwin (PI) Saptarshi Chaudhuri Dale Li Christopher Williams Betty Young Max Silva-Feaver Sarah Stokes Kernasovkiy Theory Peter Graham Jeremy Mardon Surjeet Rajendran Yue Zhao Jeremy Mardon, SITP , Stanford

  17. R EACH PHASES 1&2 (funded) FULL DESIGN size ~ 1m Q~10 6 size ~ 350ml — 1m Q~10 6 T~0.1K, thermal noise limited T~4K, thermal noise limited ν = m γ ' / 2 π kHz MHz GHz THz 10 - 3 CMB ( γ→γ ' ) precision EM 10 - 6 stellar production PHASE 1 10 - 9 CMB PHASE 2 ( γ ' →γ ) ε ADMX ADMX 10 - 12 full experiment 10 - 15 peV neV μ eV meV m γ ' Jeremy Mardon, SITP , Stanford

  18. C ONCLUSIONS Axion search methods easily probe hidden photons If B-fields are a problem… 
 a hidden-photon search gives real science reach 
 without static B-field Cavity-to-cavity light-through-walls experiments could be very powerful Hidden-photon dark matter search with LC resonator has huge reach (upcoming at Stanford) key refs:1201.5902, 1407.4806, 1411.7382 Jeremy Mardon, SITP , Stanford

  19. E XTRAS Jeremy Mardon, SITP , Stanford

  20. C ONFIRMING A SIGNAL Excellent cross-checks are possible: — always at same fixed frequency — orientation dependence is characteristic of vector — phase and directional coherence over ~1000 wavelengths — could map out phase and direction over time Jeremy Mardon, SITP , Stanford

  21. P RODUCTION SUMMARY Inflation produces full DM abundance Graham, JM & Rajendran 1504.02102 Inflation produces DM subcomponent ν = m γ ' / 2 π kHz MHz GHz THz PHz 1 ALSO: 10 - 3 CMB ( γ→γ ' ) precision — Misalignment EM 10 - 6 stellar production possible ε ⨯ ( ρ γ ' / ρ cdm ) 1 / 2 production ( with special A μ A μ R 10 - 9 CMB ( γ ' →γ ) coupling) ADMX LC oscillators 10 - 12 ADMX Arias et al 1201.5902 10 - 15 Xenon 10 / 100 — Production not high - scale fully explored (work 10 - 18 in fl ationary production in progress) peV neV μ eV meV eV keV m γ ' Jeremy Mardon, SITP , Stanford

  22. D ETECTION S UMMARY ν = m γ ' / 2 π kHz MHz GHz THz PHz 1 10 - 3 CMB ( γ→γ ' ) precision EM 10 - 6 stellar ε ⨯ ( ρ γ ' / ρ cdm ) 1 / 2 production 10 - 9 CMB ( γ ' →γ ) ADMX LC oscillators 10 - 12 ADMX Next few 10 - 15 Xenon 10 / 100 years at high - scale 10 - 18 in fl ationary production SLAC/ peV neV μ eV meV eV keV Stanford m γ ' ?? ADMX? (dish 1411.7382 Direct 1201.5902 focussing?) detection? Jeremy Mardon, SITP , Stanford 1412.8378 1212.2970

More recommend