gravitational waves from ns interiors
play

GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. - PowerPoint PPT Presentation

GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) 1. Superfluid turbulence 2. Post-glitch relaxation 3. Rigorous model parametrised template


  1. GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) 1. Superfluid turbulence 2. Post-glitch relaxation 3. Rigorous model → parametrised template → nuclear physics (viscosity, compressibility)

  2. CONTINUOUS SOURCE C-C diff. rotation (glitches) → nonaxisymmetric superfluid flows Long-lived (days → years) periodic signal • Superfluid turbulence as pulsar spins down ( Re ≈ 10 11 ) • Post-glitch relaxation (Ekman pumping) • Follows burst signal of glitch itself (msec?) Not discussed here... • R-modes continuously excited in core (Andersson et al. 99; Nayyar & Owen 06) ; cf. ocean r-modes (Heyl 04) • Amplitude and threshold probe superfluid core and viscous crust-core boundary layer (Lindblom & Mendell 99; Bildsten & Ushomirsky 00; Levin & Ushomirsky 01)

  3. SUPERFLUID CIRCULATION oscillating hydro torque EKMAN PUMPING Re =10 4 (Peralta et al. 05, 06, 07) Differential rotation → meridional circulation • superfluid → HVBK two-fluid model (3D) • Quantised vortices ↔ mutual friction

  4. MACRO SF TURBULENCE TAYLOR VORTEX HERRINGBONE & SPIRAL TURBULENCE

  5. POST-GLITCH RELAXATION • Ekman: fluid spun up in radially expanding boundary layer (meridional → Coriolis) • T Ekman = (2 E 1/2 Ω ) −1 with E = ν (2 Ω R 2 ) −1 ≈ Re −1 • Buoyancy inhibits meridional flow less/more according to compressibility K −2 − K −2 ) • Brunt-Vaisala frequency: N 2 =g 2 ( c eq • Incompressible: K → ∞ . Unstratified: N → 0 • Nonaxisymmetric perturbation ∝ exp( im φ ) • Wave strain : (van Eysden & Melatos 07, Bennett & Melatos 07)

  6. GW SPECTRUM • Lorentzian: measure width & peak frequency 2 2 f f = = ( ) ( ) h f h f × + ω + − Ω 2 2 ω + − Ω 2 2 ( ) ( 2 ) E f E f 11 21 EQUATORIAL OBSERVER • Extract two of E, N, K if Ω known (X-rays) • Width ratio independent of E (i.e. viscosity) • Amplitude depends on distance, orientation, ∆Ω , and compressibilities… but not E • Pol’n ratio: orientation to line of sight (also N, K ) (van Eysden & Melatos 07, Bennett & Melatos 07)

  7. (van Eysden & Melatos 07) K = 0.1 Ν = 1 K = 0.3 h + ( f ) K = 1 K = 3 f N = 0.1 K = 1 h × ( f ) N = 0.3 N = 3 N = 1 f

  8. EXTRACTING NUCLEAR PHYSICS (Bennett & Melatos 07) E K N i i i E E K N K N Total signal including current quadrupole

  9. PHYSICS TO WORRY ABOUT • Microscopic turbulence • DGI → tangle of quantized vortices • Affects the mutual friction coupling ↓ (Peralta et al 05, 06; Andersson et al 06, 07) • Macroscopic turbulence (Kolmogorov “eddies”) • Do large or small eddies dominate the GW signal?

  10. WHAT WILL LIGO TEACH US? SF turbulence • Is the core superfluid? • Mutual friction & entrainment parameter • Viscosity • Crust-core coupling

  11. Glitches • Measure c eq and K for nuclear matter • Do glitches happen faster or slower than one rotation period? • Probe “seismic” (avalanche) dynamics • Spectrum of non-axisymmetric excitation NO OTHER GOOD WAY TO LEARN SUCH THINGS!

Recommend


More recommend