cosmological gravitational waves
play

COSMOLOGICAL GRAVITATIONAL WAVES DANIEL G. FIGUEROA IFIC, Valencia, - PowerPoint PPT Presentation

COSMOLOGICAL GRAVITATIONAL WAVES DANIEL G. FIGUEROA IFIC, Valencia, Spain September 23-27 2019, Kavli-RISE summer' school on Gravitational Waves Straight to the point Gravitational Waves (GWs) detected ! [LIGO & Virgo Scientific


  1. Irreducible GW background from Inflation = Ω ( o ) ✓ H ◆ 2 ✓ k ✓ d log ρ GW ◆ 1 ◆ n t h ( k ) = 2 Ω ( o ) 24 ∆ 2 Rad GW ( f ) ≡ h ∗ ( k ) ∆ 2 ρ ( o ) d log k π 2 m p aH o } c n t ≡ − 2 ✏ energy scale T ( k ) ∝ k 0 (RD) Transfer Funct.: Quantum -6.0 aLIGO 2 Ω GW ] Fluctuations -8.0 Ω GW ∝ 1 /k 2 Not Observable ! Log[h 0 (MD modes) -10.0 LISA ) s p a h r e … p -12.0 ( B t p scale-invariant (RD modes) M e C c x n e i r e d t i l t e d ( q u a , s i - -14.0 ) s c a l y e - i n v a r i a n t ( R D l m o d e s ) t c e r i d n i -16.0 -18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0 Log[f]

  2. Irreducible GW background from Inflation E 2 ↵ B 2 ↵ | e lm | 2 ↵ ≡ C E | b lm | 2 ↵ ≡ C B ⌦ ⌦ ⌦ ⌦ , l , → l B- MODE: Depends only on Tensor Perturbations ! Dashed Line Theoretical Inflation Expectation Planck/Keck 2 2 r ≡ ∆ t / ∆ s < 0 . 07 (2 σ ) (!) r ∼ 10 − 2 − 10 − 3 ⇒ E ∗ ∼ 5 · 10 15 GeV next goal

  3. Irreducible GW background from Inflation E 2 ↵ B 2 ↵ | e lm | 2 ↵ ≡ C E | b lm | 2 ↵ ≡ C B ⌦ ⌦ ⌦ ⌦ , l , → l B- MODE: Depends only on Tensor Perturbations ! Search of B-modes @ CMB, might be only change to detect Inflationary Tensors ! Ground : AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G Balloons Satellites EBEX 10k, Spider CMBPol, COrE, LiteBIRD,

  4. INFLATIONARY COSMOLOGY Scalar { ( ) Primordial Inflation initial = cond. perturbations Irreducible GW Tensor Background

  5. INFLATIONARY COSMOLOGY Scalar { ( ) Primordial Inflation initial = cond. perturbations Irreducible GW Tensor Background Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs Modified Gravity, spectator fields, graviton mass, …

  6. INFLATIONARY COSMOLOGY Scalar { ( ) Primordial Inflation initial = cond. perturbations Irreducible GW Tensor Background Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs Modified Gravity, spectator fields, graviton mass, …

  7. INFLATIONARY MODELS Axion-Inflation Shift symmetry φ ! φ + C on c • ϕ → ϕ + const. Freese, Frieman, Olinto ’90; . . . ϕ V ( ϕ ) + α f F µ ν ˜ inflaton = pseudo-scalar axion F µ ν ϕ • ⇤ Not the QCD axion; lue during aine

  8. INFLATIONARY MODELS Axion-Inflation Shift symmetry φ ! φ + C on c • ϕ → ϕ + const. Freese, Frieman, Olinto ’90; . . . ϕ V ( ϕ ) + α f F µ ν ˜ inflaton = pseudo-scalar axion F µ ν ϕ [N. Barnaby, E. Pajer, M. Peloso (arXiv:1110.3327)] [J. Cook, L. Sorbo (arXiv:1109.0022)] ξ ≡ α ˙ ˙ φ � ∂ 2 ϕ Photon: ! � ∂τ 2 + k 2 ± 2 k ξ 2 fH A ± ( τ , k ) = 0 , 2 helicities τ Chiral A + / e πξ , A+ exponentially amplified, ! | A − | ⌧ | A + | instability lue during aine

  9. INFLATIONARY MODELS Axion-Inflation Shift symmetry φ ! φ + C on c • ϕ → ϕ + const. Freese, Frieman, Olinto ’90; . . . ϕ V ( ϕ ) + α f F µ ν ˜ inflaton = pseudo-scalar axion F µ ν ϕ chiral GWs ! { E i E j + B i B j } T T ij � r 2 h ij = 16 π G Π TT ij , , : h 00 ij + 2 H h 0 ∝ GW left-chirality only ! Chiral A µ lue during aine

  10. INFLATIONARY MODELS Axion-Inflation GW energy spectrum today Gauge fields ! source a ! LISA Blue-Tilted ! + Chiral ! + Non-G ! GW background vacuum fluctuations Bartolo et al ’16, 1610.06481 Critical view: Ferreira et al, 1512.06116

  11. INFLATIONARY MODELS Axion-Inflation GW energy spectrum today Gauge fields ! source a ! LISA t Blue-Tilted ! c e t e d n a + Chiral ! c ! d A n S u I o L r g + Non-G ! k c a b s i h GW background t vacuum fluctuations Bartolo et al ’16, 1610.06481 Critical view: Ferreira et al, 1512.06116

  12. INFLATIONARY MODELS What if there are arbitrary large excitation of fields !? fields coupled to the inflaton ? will they create GWs? (i.e. no need of extra symmetry) e inflaton φ V ( φ ) Scalar Fld − L χ = ( ∂χ ) 2 / 2 + g 2 ( φ � φ 0 ) 2 χ 2 / 2, � L ψ = ¯ ψγ µ ∂ µ ψ + g ( φ � φ 0 ) ¯ ψψ , Fermion Fld | � � 4 F µ ν F µ ν � | ( ∂ µ � gA µ ) Φ ) | 2 � V ( Φ † Φ ) [ L = � 1 ( ) Gauge Fld d Φ = φ e i θ i θ

  13. INFLATIONARY MODELS What if there are arbitrary large excitation of fields !? fields coupled to the inflaton ? will they create GWs? (i.e. no need of extra symmetry) e inflaton φ V ( φ ) ⇠ All 3 cases: s non-adiabatica µ 2 ⌘ g ˙ m � m 2 , s ˙ during s m = g ( φ ( t ) � φ 0 ) v ∆ t na ⇠ 1 /µ , φ 0 , reads n k = Exp { � π ( k/µ ) 2 } Non-adiabatic field excitation (particle creation) GW

  14. INFLATIONARY MODELS ⇣ µ ⌘ P (tot) � P (vac) ⌘ P (pp) ⇠ few ⇥ O (10 − 4 ) H 2 ∆ P h ⌘ 3 ln 2 ( µ/H ) , h h h W ( k τ 0 ) m 2 P (vac) P (vac) P h H pl h h µ 2 ⌘ g ˙ φ 0 ( Sorbo et al 2011, Peloso et al 2012-2013, Caprini & DGF 2018) -6.0 2 Ω GW ] -8.0 Ω GW ∝ 1 /k 2 Log[h 0 (MD modes) -10.0 -12.0 ∆ P h scale-invariant (RD modes) P h r e d t i l t e d ( R D m o d -14.0 e s ) ∆ k ∼ µ -16.0 -18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0 Log[f]

  15. INFLATIONARY MODELS ⇣ µ ⌘ P (tot) � P (vac) ⌘ P (pp) ⇠ few ⇥ O (10 − 4 ) H 2 ∆ P h ⌘ 3 ln 2 ( µ/H ) , h h h W ( k τ 0 ) m 2 P (vac) P (vac) P h H pl h h µ 2 ⌘ g ˙ φ 0 ( Sorbo et al 2011, Peloso et al 2012-2013, Caprini & DGF 2018) ∆ P h -6.0 ⌧ 1 2 Ω GW ] P h -8.0 Ω GW ∝ 1 /k 2 for every model ! Log[h 0 (MD modes) -10.0 -12.0 ∆ P h scale-invariant (RD modes) P h r e d t i l t e d ( R D m o d -14.0 e s ) ∆ k ∼ µ -16.0 -18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0 Log[f]

  16. INFLATIONARY COSMOLOGY 'cures' hBB Cosmological Pple Scalar { ( ) Primordial Inflation initial = cond. perturbations Irreducible GW Tensor Background Observable Blue tilted Continuous (chiral) GWs shift symm. Extra species { GW production Localized GW negligible arbitrary enhancement GW production Scenarios Enhanced Scalar Pert. Modified Gravity, spectator fields, graviton mass, …

  17. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) ∆ 2 R � ∆ 2 CMB ⇠ 3 · 10 − 9 , @ small scales � Let us suppose � R ds 2 = a 2 ( η )[ − (1 + 2 Φ ) d η 2 + [(1 − 2 Ψ ) δ ij + 2 F ( i,j ) + h ij ] dx i dx j ] (

  18. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) ∆ 2 R � ∆ 2 CMB ⇠ 3 · 10 − 9 , @ small scales � Let us suppose � R ds 2 = a 2 ( η )[ − (1 + 2 Φ ) d η 2 + [(1 − 2 Ψ ) δ ij + 2 F ( i,j ) + h ij ] dx i dx j ] ( ij + k 2 h ij = S T T (2nd Order Pert.) h ′′ ij + 2 H h ′ ∼ Φ ∗ Φ ij S ij = 2 Φ ∂ i ∂ j Φ − 2 Ψ ∂ i ∂ j Φ + 4 Ψ ∂ i ∂ j Ψ + ∂ i Φ ∂ j Φ − ∂ i Φ ∂ j Ψ − ∂ i Ψ ∂ j Φ + 3 ∂ i Ψ ∂ j Ψ 4 3(1 + w ) H 2 ∂ i ( Ψ ′ + H Φ ) ∂ j ( Ψ ′ + H Φ ) − Phys.Rev. D81 (2010) 023527 Phys.Rev. D75 (2007) 123518 − 2 c 2 s 3 w H [3 H ( H Φ − Ψ ′ ) + ∇ 2 Ψ ] ∂ i ∂ j ( Φ − Ψ ) D. Wands et al, 2006-2010

  19. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) ∆ 2 R � ∆ 2 CMB ⇠ 3 · 10 − 9 , @ small scales � Let us suppose � R ds 2 = a 2 ( η )[ − (1 + 2 Φ ) d η 2 + [(1 − 2 Ψ ) δ ij + 2 F ( i,j ) + h ij ] dx i dx j ] ( ij + k 2 h ij = S T T (2nd Order Pert.) h ′′ ij + 2 H h ′ ∼ Φ ∗ Φ ij � 216 2 F rad = 8 � Ω gw, 0 ( k ) = F rad Ω γ , 0 △ 4 R ( k ) . 8 . 3 × 10 − 3 f ns ∼ 30 π 3 3 ∼ 1 Phys.Rev. D81 (2010) 023527 Phys.Rev. D75 (2007) 123518 D. Wands et al, 2006-2010

  20. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) � − 1 � F rad 2 △ 2 Ω gw, 0 < 1 . 5 × 10 − 5 R < 0 . 1 . BBN 30 � − 1 � F rad 2 Ω gw, 0 < 6 . 9 × 10 − 6 . △ 2 R < 0 . 07 LIGO . 30 � − 1 � F rad 2 Ω gw, 0 < 4 × 10 − 8 . △ 2 R < 5 × 10 − 3 PTA 30 � − 1 � F rad 2 △ 2 R < 3 × 10 − 4 1 × 10 − 5 LISA Ω gw, 0 < 10 − 13 30 � − 1 � F rad 2 △ 2 R < 3 × 10 − 7 Ω gw, 0 < 10 − 17 BBO 30 Phys.Rev. D81 (2010) 023527

  21. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) ∆ 2 IF very R Primordial Black Holes (PBH) may be produced! enhanced Clesse & Garcia-Bellido, 2015-2017 PBH candidate for Dark Matter ? Ali-Haimoud et al 2016-2017 Has LIGO detected PBH’s ? See talks by Ali-Haimoud, Byrnes, Garcia-Bellido, Zumalacarregui, …

  22. INFLATIONARY MODELS non-monotonic possible to IF { multi-field { INFLATION ∆ 2 enhance R (at small scales) ∆ 2 IF very R Primordial Black Holes (PBH) may be produced! enhanced Clesse & Garcia-Bellido, 2015-2017 PBH candidate for Dark Matter ? Ali-Haimoud et al 2016-2017 Has LIGO detected PBH’s ? ‘We will know soon, determining See talks by mass and spin distributions’ Ali-Haimoud, Byrnes, (Maya Fishbach, Moriond'19) Garcia-Bellido, Zumalacarregui, …

  23. INFLATIONARY COSMOLOGY Scalar { ( ) Primordial initial = cond. perturbations Tensor : Irreducible GWs Inflation Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs … ( ) Matching inflation Reheating = New GW production with Thermal Era

  24. GWs from (p)Reheating INFLATION − → REHEATING − → BIG BANG THEORY

  25. SCALAR (P)REHEATING Chaotic Scenarios: PARAMETRIC RESONANCE 1) 1 1 2 m 2 χ χ 2 2 g 2 φ 2 χ 2 V ( φ , χ ) = V ( φ ) + + (Chaotic Models) k + [ κ 2 + m 2 ( φ )] X k = 0 X 00 (Fluctuations of Matter)

  26. SCALAR (P)REHEATING Chaotic Scenarios: PARAMETRIC RESONANCE 1) 1 1 2 m 2 χ χ 2 2 g 2 φ 2 χ 2 V ( φ , χ ) = V ( φ ) + + (Chaotic Models) k + [ κ 2 + m 2 ( φ )] X k = 0 X 00 (Fluctuations of Matter)

  27. SCALAR (P)REHEATING Chaotic Scenarios: PARAMETRIC RESONANCE 1) 1 1 2 m 2 χ χ 2 2 g 2 φ 2 χ 2 V ( φ , χ ) = V ( φ ) + + (Chaotic Models) k + [ κ 2 + m 2 ( φ )] X k = 0 X 00 (Fluctuations of Matter)

  28. SCALAR (P)REHEATING Chaotic Scenarios: PARAMETRIC RESONANCE 1) 1 1 2 m 2 χ χ 2 2 g 2 φ 2 χ 2 V ( φ , χ ) = V ( φ ) + + (Chaotic Models) k + [ κ 2 + m 2 ( φ )] X k = 0 X 00 (Fluctuations of Matter)

  29. SCALAR (P)REHEATING Chaotic Scenarios: PARAMETRIC RESONANCE 1) 1 1 2 m 2 χ χ 2 2 g 2 φ 2 χ 2 V ( φ , χ ) = V ( φ ) + + (Chaotic Models) k + [ κ 2 + m 2 ( φ )] X k = 0 X 00 (Fluctuations of Matter)

  30. SCALAR (P)REHEATING ): 2) (Hybrid Scenarios): SPINODAL INSTABILITY φ ( t ) + ( µ 2 + g 2 | χ | 2 ) φ ( t ) = 0 ¨ √ 9 ( k < m = λ v ) > = k 2 + m 2 ⇣ ⌘ φ 2 √ � + λ | χ | 2 � m 2 − k 2 t χ k + ¨ c − 1 χ k = 0 > χ k , n k ∼ e ; φ 2 Hybrid Preheating

  31. INFLATIONARY PREHEATING ϕ k + ω 2 ( k, t ) ϕ k = 0 Physics of (p)REHEATING : ¨ ω 2 = k 2 + m 2 (1 − V t ) < 0 ⇢ Hybrid Preheating : (Tachyonic) ω 2 = k 2 + Φ 2 ( t ) sin 2 µt Chaotic Preheating : (Periodic) 8 L i ∼ 1 /k i > > > < ϕ k i , n k i ∼ e µ ( k,t ) t ⇒ Inhomogeneities: δρ / ρ & 1 At k i : > > > v ≈ c : (p)REHEATING: VERY EFFECTIVE GW GENERATOR

  32. INFLATIONARY PREHEATING ϕ k + ω 2 ( k, t ) ϕ k = 0 Physics of (p)REHEATING : ¨ ω 2 = k 2 + m 2 (1 − V t ) < 0 ⇢ Hybrid Preheating : (Tachyonic) ω 2 = k 2 + Φ 2 ( t ) sin 2 µt Chaotic Preheating : (Periodic) 8 L i ∼ 1 /k i > > > < ϕ k i , n k i ∼ e µ ( k,t ) t ⇒ Inhomogeneities: δρ / ρ & 1 At k i : > > > v ≈ c : ! r o t a r e n e g W G e v t i c e f f (p)REHEATING: VERY EFFECTIVE GW GENERATOR E y r e V : g n i t a e h e r P Easther, Giblin, Lim ’06-’08 DGF, Ga-Bellido, et al ’07-’10 Kofman, Dufaux et al ’07-’09

  33. INFLATIONARY PREHEATING Parameter Dependence ( Peak amplitude ) ω 2 ⇤ ≡ V 00 ( Φ I ) GW ∼ A 2 ω 6 Ω ( o ) q − 1 / 2 Chaotic Models: ρ m 2 p q ⌘ g 2 Φ 2 i . ω 2 ⇤ Resonance Param. κ (DGF, Torrentí 2017)

  34. INFLATIONARY PREHEATING Parameter Dependence ( Peak amplitude ) f o ∼ 10 8 − 10 9 Hz Ω ( o ) GW ∼ 10 − 11 , @ Chaotic Models: Large amplitude ! … at high Frequency ! Very unfortunate… but unobservable !

  35. INFLATIONARY PREHEATING Parameter Dependence ( Peak amplitude ) f o ∼ 10 8 − 10 9 Hz Ω ( o ) GW ∼ 10 − 11 , @ Chaotic Models: Large amplitude ! … at high Frequency ! Ω GW ∝ q − 1 / 2 Spectroscopy of particle couplings ? different couplings … different peaks ?

  36. INFLATIONARY PREHEATING Parameter Dependence ( Peak amplitude ) f o ∼ 10 8 − 10 9 Hz Ω ( o ) GW ∼ 10 − 11 , @ Chaotic Models: Large amplitude ! … at high Frequency ! Very unfortunate… no detectors there !

  37. INFLATIONARY PREHEATING Parameter Dependence ( Peak amplitude ) ✓ v ◆ 2 f o ∼ λ 1 / 4 × 10 9 Hz Ω ( o ) × f ( λ , g 2 ) , Hybrid Models: GW ∝ m p f o ∼ 10 8 − 10 9 Hz λ ∼ 0 . 1 { ) l a r Ω ( o ) GW ∼ 10 − 11 , u @ t a n f o ∼ 10 2 Hz ( λ ∼ 10 − 28 Large amplitude ! (fine-tuning) (for v ' 10 16 GeV) realistically speaking …

  38. INFLATIONARY COSMOLOGY 'cures' hBB Scalar { ( ) Primordial initial = cond. perturbations Tensor : Irreducible GWs Inflation Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs … Large GW production scalar Preheating (high freq) Reheating gauge Preheating fermion Preheating

  39. INFLATIONARY COSMOLOGY 'cures' hBB Scalar { ( ) Primordial initial = cond. perturbations Tensor : Irreducible GWs Inflation Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs … Large GW production scalar Preheating (high freq) Reheating gauge Preheating Large GW, peaks (high freq) fermion Preheating Large GW production (high freq)

  40. INFLATIONARY COSMOLOGY 'cures' hBB Scalar { ( ) Primordial initial = cond. perturbations Tensor : Irreducible GWs Inflation Extra species/symmetries { Scenarios Enhanced Scalar Pert. Enhanced GWs … Large GW production scalar Preheating (high freq) Reheating gauge Preheating Large GW, peaks 1006.0217, 1706.02365 (high freq) fermion Preheating Large GW production 1203.4943, 1306.6911 (high freq)

  41. Gravitational Waves as a probe of the early Universe OUTLINE 0) GW definition 1) GWs from Inflation 2) GWs from Preheating Early Universe 3) GWs from Phase Transitions 4) GWs from Cosmic Defects

  42. First order phase transitions Universe expands, T decreases: phase transition triggered ! quantum tunneling true and false vacua

  43. First order phase transitions Universe expands, T decreases: phase transition triggered ! quantum tunneling true and false vacua Π ij ∼ ∂ i φ ∂ j φ (Bubble wall collisions) source: Π ij Π ij ∼ γ 2 ( ρ + p ) v i v j (Sound waves/Turbulence) anisotropic stress Π ij ∼ ( E 2 + B 2 ) − E i E j − B i B j (MHD) 3

  44. What is the freq. in 1st Order PhT’s ? = 2 · 10 − 5 a ∗ T ∗ f c = f ∗ 1 TeV Hz a 0 ✏ ∗ GW generation <—> bubbles properties

  45. What is the freq. in 1st Order PhT’s ? = 2 · 10 − 5 a ∗ T ∗ f c = f ∗ 1 TeV Hz a 0 ✏ ∗ GW generation <—> bubbles properties SOUND WAVES & BUBBLE COLLISIONs MDH TURBULENCE ⇥ ' H ∗ � , H ∗ R ∗ β − 1 : duration of PhT size of bubbles R ∗ = v b β − 1 at collision : speed of bubble walls v b ≤ 1

  46. Parameters determining the GW spectrum Parameter List ! = 2 · 10 − 5 a ∗ T ∗ f c = f ∗ 1 TeV Hz (not independent) a 0 ✏ ∗ ⇥ ' H ∗ β � , H ∗ R ∗ , v b , T ∗ H ∗ ✓ ⇢ ∗ ◆ 2 α = ρ vac s Ω GW ∼ Ω rad ✏ 2 ∗ ⇢ ∗ ρ ∗ tot rad κ = ρ kin ρ ∗ κ α s ρ vac = ρ ∗ 1 + α tot

  47. Example of spectrum peak of fluid-related processes 1 /R ∗ peak of bubble collisions β 10 - 8 10 - 10 h 2 W GW H f L 10 - 12 wall collision total sound waves 10 - 14 MHD turbulence 10 - 16 0.001 0.01 0.1 10 - 5 10 - 4 f @ Hz D Caprini et al, arXiv:1512.06239

  48. Example of spectrum peak of fluid-related processes 1 /R ∗ peak of bubble collisions β 10 - 8 t c e t e d 10 - 10 n a c ! d A n h 2 W GW H f L S u I o L r g k c a b 10 - 12 s i h wall collision t total sound waves 10 - 14 MHD turbulence 10 - 16 0.001 0.01 0.1 10 - 5 10 - 4 f @ Hz D Caprini et al, arXiv:1512.06239

  49. Evaluation of the signal • bubble collisions : analytical and numerical simulations (Huber and Konstandin arXiv:0806.1828) [ astro-ph/9310044, 0711.2593, 0901.1661 ] • sound waves : numerical simulations of scalar field and fluid (Hindmarsh et al arXiv:1504.03291) 1304.2433 [ 1504.03291 ,1608.04735, 1704.05871 ] • MDH turbulence : analytical evaluation (Caprini et al arXiv:0909.0622)

  50. Evaluation of the signal • bubble collisions : analytical and numerical simulations ! y a l p r e t n i s r (Huber and Konstandin arXiv:0806.1828) c e t i t s a y m h P k e r l a c i d t r & a [ astro-ph/9310044, 0711.2593, 0901.1661 ] P y r d t n e m a m y g y o s l o a m n s o o y C r a b h t i w s n o i t c e n n o • sound waves : numerical simulations of scalar field and fluid C (Hindmarsh et al arXiv:1504.03291) 1304.2433 [ 1504.03291 ,1608.04735, 1704.05871 ] LISA —> new probe of BSM physics! (complementary to particle colliders) • MDH turbulence : analytical evaluation (Caprini et al arXiv:0909.0622)

  51. Models for EWPT and beyond • LISA sensitive to energy scale 10 GeV - 100 TeV ! (mHZ) • LISA can probe the EWPT in BSM models … - singlet extensions of MSSM (Huber et al 2015) - direct coupling of Higgs to scalars (Kozackuz et al 2013) - SM + dimension six operator (Grojean et al 2004) • … and beyond the EWPT - Dark sector: provides DM candidate and confining PT (Schwaller 2015) - Warped extra dimensions : PT from the dilaton/radion stabilisation in RS-like models (Randall and Servant 2015)

  52. Models for EWPT and beyond • LISA sensitive to energy scale 10 GeV - 100 TeV ! (mHZ) Big Problem: LHC is • LISA can probe the EWPT in BSM models … - singlet extensions of MSSM (Huber et al 2015) putting great pressure - direct coupling of Higgs to scalars (Kozackuz et al 2013) over these scenarios - SM + dimension six operator (Grojean et al 2004) • … and beyond the EWPT - Dark sector: provides DM candidate and confining PT (Schwaller 2015) - Warped extra dimensions : PT from the dilaton/radion stabilisation in RS-like models (Randall and Servant 2015)

  53. Models for EWPT and beyond • LISA sensitive to energy scale 10 GeV - 100 TeV ! (mHZ) Big Problem: LHC is • LISA can probe the EWPT in BSM models … - singlet extensions of MSSM (Huber et al 2015) putting great pressure - direct coupling of Higgs to scalars (Kozackuz et al 2013) over these scenarios - SM + dimension six operator (Grojean et al 2004) • … and beyond the EWPT LISA —> new probe of BSM physics! - Dark sector: provides DM candidate and confining PT (complementary to particle colliders) (Schwaller 2015) - Warped extra dimensions : PT from the dilaton/radion stabilisation in RS-like models (Randall and Servant 2015)

  54. What about Cosmic Defects ? ( aftermath products of a PhT ) MAGNETIC FIELD DYNAMICS: Hybrid Preheating (Abelian-Higgs) [Dufaux, DGF, G a -Bellido, PRD’10]

  55. Introduction to Cosmic Defects →

  56. Introduction to Cosmic Defects → y x

  57. Introduction to Cosmic Defects → y x

  58. Introduction to Cosmic Defects → y x

  59. Introduction to Cosmic Defects → y x

  60. Introduction to Cosmic Defects → y φ = v φ = v x φ = v φ = v

  61. Introduction to Cosmic Defects → y φ = v φ = v φ = 0 x φ = v φ = v

  62. Introduction to Cosmic Defects DYNAMICS OF THE HIGGS: Hybrid Preheating (Abelian-Higgs) U(1) Breaking (after Hybrid Inflation) [Dufaux, DGF, G a -Bellido, PRD’10] Higgs Dynamics Dufaux et al PRD 2010

  63. Introduction to Cosmic Defects U(1) Breaking (after Hybrid Inflation) SNAPSHOT OF THE HIGGS (mt = 17) Dufaux et al PRD 2010

  64. Introduction to Cosmic Defects U(1) Breaking (after Hybrid Inflation) Magnetic Field energy density Dufaux et al PRD 2010

Recommend


More recommend