Graph ensemble design for channel coding A. Montanari 1 A. Amraoui 2 T. Richardson 3 R. Urbanke 2 A. Dembo 4 1 ENS, France → Stanford, USA 2 EPFL, Switzerland, 3 Flarion, USA 4 Stanford, USA October 18, 2006 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Outline The optimization problem 1 A probabilistic strategy 2 The approximate formula 2 Future directions 3 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The optimization problem A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The object to be optimized: A code, i.e. a graph 1 2 · · · m 1 2 · · · n A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The objective function Let S ⊆ [ n ] be random with density ǫ ∈ [0 , 1]... P B ( G ) = P ǫ {S contains a ‘stopping set’ } A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
If you did not get it Bipartite graph G ↔ hypergraph H P B = P ǫ { a random subgraph of H contains a 2-core } A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
A probabilistic strategy A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
A ‘standard’ ensemble G random (configuration model) with → Up-degree distribution: ρ = ( ρ 1 , . . . , ρ k ) → Down-degree distribution: λ = ( λ 1 , . . . , λ k ) Good for n = ∞ ! [Luby et al.] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Approximate formula for E λ,ρ P B LATER!!! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Implementation [Amraoui/Montanari/Urbanke] Sample Run: Minimize m / n , given P B = 10 − 4 ǫ = 0 . 5 n = 5000 Largest degree 13 Expurgation 6 [I did not explain this] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 40.58 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 40.97 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 41.34 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=10 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 41.68 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 42.01 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=20 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 42.33 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=25 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 43.63 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=30 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding
Recommend
More recommend