graph ensemble design for channel coding
play

Graph ensemble design for channel coding A. Montanari 1 A. Amraoui 2 - PowerPoint PPT Presentation

Graph ensemble design for channel coding A. Montanari 1 A. Amraoui 2 T. Richardson 3 R. Urbanke 2 A. Dembo 4 1 ENS, France Stanford, USA 2 EPFL, Switzerland, 3 Flarion, USA 4 Stanford, USA October 18, 2006 A. Montanari A. Amraoui, T.


  1. Graph ensemble design for channel coding A. Montanari 1 A. Amraoui 2 T. Richardson 3 R. Urbanke 2 A. Dembo 4 1 ENS, France → Stanford, USA 2 EPFL, Switzerland, 3 Flarion, USA 4 Stanford, USA October 18, 2006 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  2. Outline The optimization problem 1 A probabilistic strategy 2 The approximate formula 2 Future directions 3 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  3. The optimization problem A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  4. The object to be optimized: A code, i.e. a graph 1 2 · · · m 1 2 · · · n A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  5. The objective function Let S ⊆ [ n ] be random with density ǫ ∈ [0 , 1]... P B ( G ) = P ǫ {S contains a ‘stopping set’ } A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  6. The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  7. The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  8. The objective function up-degree ≥ 2 A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  9. If you did not get it Bipartite graph G ↔ hypergraph H P B = P ǫ { a random subgraph of H contains a 2-core } A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  10. A probabilistic strategy A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  11. General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  12. General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  13. General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  14. General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  15. General strategy 1 Define a graph ensemble with parameters n , m , λ = ( λ 1 , λ 2 , . . . , λ k ), ρ = ( ρ 1 , ρ 2 , . . . , ρ k ). 2 Prove an pproximate formula E λ,ρ P B ≃ Q ( λ, ρ ). [*] 3 Find ( λ ∗ , ρ ∗ ) = arg min Q ( λ, ρ ). 4 Sample G from the ( λ ∗ , ρ ∗ )-ensemble and check it. [Concentration] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  16. A ‘standard’ ensemble G random (configuration model) with → Up-degree distribution: ρ = ( ρ 1 , . . . , ρ k ) → Down-degree distribution: λ = ( λ 1 , . . . , λ k ) Good for n = ∞ ! [Luby et al.] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  17. Approximate formula for E λ,ρ P B LATER!!! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  18. Implementation [Amraoui/Montanari/Urbanke] Sample Run: Minimize m / n , given P B = 10 − 4 ǫ = 0 . 5 n = 5000 Largest degree 13 Expurgation 6 [I did not explain this] A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  19. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 40.58 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=0 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  20. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 40.97 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  21. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 41.34 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=10 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  22. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 41.68 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  23. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 42.01 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=20 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  24. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 42.33 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=25 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

  25. Example Run 2 3 4 5 6 7 8 9 10 11 12 13 10 -1 2 3 4 5 6 7 8 9 10 43.63 % 0.0 rate/capacity 1.0 10 -2 contribution to error floor 10 -3 6 8 10 12 14 16 18 20 22 24 26 -0.01 -0.02 10 -4 -0.03 -0.04 -0.05 10 -5 -0.06 -0.07 -0.08 10 -6 -0.09 counter:=30 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 λ = 0 . 0739196 x + 0 . 65789 x 2 + 0 . 2681 x 12 , ρ = 0 . 390753 x 4 + 0 . 361589 x 5 + 0 . 247658 x 9 . Play it Again Sam! A. Montanari A. Amraoui, T. Richardson, R. Urbanke A. Dembo Graph ensemble design for channel coding

Recommend


More recommend