dynamical systems
play

Dynamical systems Expanding maps on the circle. Coding Jana - PowerPoint PPT Presentation

coding the shift transformation Dynamical systems Expanding maps on the circle. Coding Jana Rodriguez Hertz ICTP 2018 coding the shift transformation coding Index coding 1 coding the space + 2 the shift transformation 2


  1. coding the shift transformation example example . . . x x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 0 1 1 0 0 1 0 0 0 1 1 . . . σ ( x ) 0 1 1 0 0 1 0 0 0 1 1 0 . . . σ 2 ( x ) 1 1 0 0 1 0 0 0 1 1 0 1 . . . σ 3 ( x ) 1 0 0 1 0 0 0 1 1 0 1 1 . . . σ 4 ( x ) . . . 0 0 1 0 0 0 1 1 0 1 1 0 σ 5 ( x ) 0 1 0 0 0 1 1 0 1 1 0 1 . . .

  2. coding the shift transformation example example x x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 . . . x 1 0 1 1 0 0 1 0 0 0 1 1 . . . σ ( x ) 0 1 1 0 0 1 0 0 0 1 1 0 . . . σ 2 ( x ) 1 1 0 0 1 0 0 0 1 1 0 1 . . . σ 3 ( x ) 1 0 0 1 0 0 0 1 1 0 1 1 . . . σ 4 ( x ) 0 0 1 0 0 0 1 1 0 1 1 0 . . . σ 5 ( x ) 0 1 0 0 0 1 1 0 1 1 0 1 . . . . . . . . .

  3. coding the shift transformation properties of the shift Index coding 1 coding the space Σ + 2 the shift transformation 2 properties of the shift

  4. coding the shift transformation properties of the shift fixed points fixed point x is a fixed point if σ ( x ) = x

  5. coding the shift transformation properties of the shift fixed points x is a fixed point

  6. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x

  7. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0

  8. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0

  9. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases:

  10. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1

  11. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2

  12. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0

  13. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 00

  14. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 000

  15. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000

  16. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . .

  17. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . . 1

  18. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . . 11

  19. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . . 111

  20. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . . 1111

  21. coding the shift transformation properties of the shift fixed points x is a fixed point ⇒ σ ( x ) = x ⇒ [ σ ( x )] n = x n for all n ≥ 0 ⇒ x n + 1 = x n for all n ≥ 0 two cases: x 0 = 0 1 x 0 = 1 2 0000 . . . 1111 . . .

  22. coding the shift transformation properties of the shift periodic points periodic point x is a periodic point if ∃ N ≥ 0 such that x , σ ( x ) , σ 2 ( x ) , . . . , σ N ( x ) = x o ( x ) :

  23. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2

  24. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐

  25. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐

  26. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0

  27. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases

  28. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1

  29. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2

  30. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3

  31. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4

  32. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 01

  33. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 010

  34. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 0101

  35. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 01010

  36. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 010101

  37. coding the shift transformation properties of the shift periodic points of period 2 x is a periodic point of period 2 ⇒ σ 2 ( x ) = x ⇐ ⇒ [ σ 2 ( x )] n = x n for each n ≥ 0 ⇐ ⇐ ⇒ x n + 2 = x n for all n ≥ 0 4 cases x 0 x 1 = 00 1 x 0 x 1 = 01 2 x 0 x 1 = 10 3 x 0 x 1 = 11 4 (2) 010101 . . .

  38. coding the shift transformation properties of the shift periodic point are dense periodic points are dense the periodic points for the shift transformation are dense in Σ + 2

  39. coding the shift transformation properties of the shift transitivity transitivity the shift transformation is transitive

  40. coding the shift transformation properties of the shift hint

  41. coding the shift transformation properties of the shift hint there is x with dense orbit:

  42. coding the shift transformation properties of the shift hint there is x with dense orbit: x =

  43. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0

  44. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0 1

  45. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0 1 00

  46. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0 1 00 01

  47. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0 1 00 01 10

  48. coding the shift transformation properties of the shift hint there is x with dense orbit: x = 0 1 00 01 10 11

Recommend


More recommend