good points for multivariate polynomial interpolation and
play

Good points for multivariate polynomial interpolation and - PowerPoint PPT Presentation

Good points for multivariate polynomial interpolation and approximation Marc Van Barel, Matthias Humet, Laurent Sorber Dept. of Computer Science, KU Leuven, Belgium Cittadella dei Musei, Cagliari, Sardinia, Italy September 2-5, 2013


  1. “Good” points for multivariate polynomial interpolation and approximation Marc Van Barel, Matthias Humet, Laurent Sorber Dept. of Computer Science, KU Leuven, Belgium “Cittadella dei Musei”, Cagliari, Sardinia, Italy September 2-5, 2013

  2. Univariate polynomial interpolation and approximation (1) Consider a “difficult” function f defined on a subset Ω of the real line R , e.g., Ω = [ − 1 , 1 ] . “Difficult” means that it is too costly to work directly with the function f . Instead we can use a function g belonging to a vector space V : ◮ approximating f according to a certain criterion, ◮ cheap to determine, ◮ easier to handle, ◮ numerically sound (conditioning, numerical stability). Possible choices for V are: ◮ polynomials up to a certain degree, ◮ rational functions, ◮ trigonometric functions, ◮ . . . Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 2 / 23

  3. Univariate polynomial interpolation and approximation (2) In this talk, ◮ the approximating function g is a polynomial function; ◮ the approximation criterion is the ∞ -norm, i.e., � f � ∞ = max x ∈ Ω | f ( x ) | . Problem: not cheap to determine the minmax-approximant. Solution: compute cheaply a nearly-optimal approximant. An example of such a nearly-optimal approximant is the polynomial interpolating the function f in the points { x k ∈ Ω } N 1 with a corresponding small Lebesgue constant. Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 3 / 23

  4. Lebesgue constant (univariate case) subset Ω ⊂ R , e.g., Ω = [ − 1 , 1 ] monomials p k ( x ) = x k − 1 , k = 1 , 2 , . . . , N vector space V = P N = { � N k = 1 c k p k } The Lebesgue function Λ and the Lebesgue constant λ associated with a set of points { x k } N 1 is defined by N � Λ( x ) = | l i ( x ) | λ = max x ∈ Ω Λ( x ) i = 1 where l i ( x ) are the Lagrange polynomials � l i ∈ P N � � l i = δ i , j x j For any function f : � f − p � ∞ ≤ ( 1 + λ ) � f − p ∗ � ∞ Hence, nearly-optimal approximant when λ is small. Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 4 / 23

  5. Example: Chebyshev points compared to equispaced points in [ − 1 , 1 ] For more details: see the book Nick Trefethen, Approximation Theory and Approximation Practice , SIAM 2013. Lebesgue function for 30 equispaced points 8 5 10 4 6 10 3 4 10 2 2 10 1 0 10 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1 15.2. Lebesgue constants for polynomial interpolation. . . . For Chebyshev points, they satisfy Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 5 / 23 2 2

  6. Lebesgue constant (multivariate case) subset Ω ⊂ R n , e.g., Ω = [ − 1 , 1 ] 2 , a triangle, a sphere, . . . monomials p k ( x 1 , . . . , x n ) = x α 1 ( k ) · · · x α n ( k ) = x α ( k ) n 1 in a certain order ( x , α ∈ R n ) vector space P N = { � N k = 1 c k p k } The Lebesgue function Λ and the Lebesgue constant λ associated with a set of points { x k } N 1 is defined by N � Λ( x ) = | l i ( x ) | λ = max x ∈ Ω Λ( x ) i = 1 where l i ( x ) are the Lagrange polynomials � l i ∈ P N � � l i = δ i , j x j For any function f : � f − p � ∞ ≤ ( 1 + λ ) � f − p ∗ � ∞ Hence, nearly-optimal approximant when λ is small. Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 6 / 23

  7. Computing the Lebesgue constant Discretize subset Ω ∈ R n with “grid” G ⊂ Ω containing K points N N � � λ = max | l i ( x ) | − → λ ≈ max | l i ( x ) | x ∈ Ω x ∈ G i = 1 i = 1 Example of a mesh G generated by DistMesh for the L-shape consisting of 3475 points. P .-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB . SIAM Review, Volume 46 (2), pp. 329-345, June 2004 Let { φ k } N 1 be a basis for P N Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 7 / 23

  8. Minimize Lebesgue constant � � �� { y k } K min λ ≈ � L N � � 1 � { x k } N ∞ 1 � � � � � � { y k } K { y k } K { x k } N s.t. Φ N = L N Φ N 1 1 1 Objective function is not differentiable → need derivative free optimization Many local minima Large problem size, e.g.: n = 2, total degree of 20 → 231 points ∼ 462 variables [Briani, Sommariva, Vianello; 2011] use state of the art Matlab optimization algorithms to compute minima for the simplex, square and disk. → very slow for larger point sets Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 8 / 23

  9. Alternatives to obtain low Lebesgue constant Compromise between a small λ and computational effort Special subsets: small λ with little computational cost E.g., direct formula for Padua points on the square [ − 1 , 1 ] 2 Alternative algorithm (“greedy” algorithm) k � � is maximal on � � First phase : add ( k + 1 ) th point where � l ( k ) , i ( x ) 1 the subset Ω , i.e., on the “grid” G i = 1 ⋆ Remember: λ = max x ∈ Ω � k � � � l ( k ) , i ( x ) � i = 1 k + 1 � = 1 ⋆ By adding the point x ∗ , we assure that � � l ( k + 1 ) , i ( x ∗ ) � � i = 1 Second phase : update points one by one 2 N − 1 � � is maximal ⋆ remove point and add it again where � � � l ( N − 1 ) , i ( x ) i = 1 Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 9 / 23

  10. Compare points on the square 231 points (total degree 20), result after 20 iterations. Basis of product Chebyshev polynomials: φ k ( x , y ) = T i ( x ) T j ( y ) PADUA: LC = 9.2 OPTIMAL: LC = 8.14 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 ALGORITHM: LC = 18.0 1 0.5 0 −0.5 −1 −1 −0.5 0 0.5 1 Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 10 / 23

  11. Compute points for the L-shape 231 points (total degree 20), result after 20 iterations. Basis of product Chebyshev polynomials: φ k ( x , y ) = T i ( x ) T j ( y ) Lebesgue constant: 31 . 5 1 0.8 0.6 0.4 0.2 0 y −0.2 −0.4 −0.6 −0.8 −1 −1 −0.5 0 0.5 1 x Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 11 / 23

  12. Compute points for the L-shape 231 points (total degree 20), 20 iterations Show Lebesgue constant after each iteration 1000 900 800 700 600 500 LC 400 300 200 100 0 −100 0 5 10 15 20 iteration Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 12 / 23

  13. Some problems with L-shape Product Chebyshev polynomials are not a good basis for the L-shape, see figure Alternative basis: orthogonal polynomials with respect to discrete inner product → need to recompute basis when points change too much 14 10 12 10 10 10 8 10 cond( Φ ) 6 10 4 10 2 10 0 10 0 50 100 150 200 250 k Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 13 / 23

  14. Alternative optimization algorithm Instead of minimizing the ∞ -norm � �� � { y k } K min λ ≈ � L N � � 1 � { x k } N ∞ 1 � � � � � � { y k } K { y k } K { x k } N s.t. Φ N = L N Φ N 1 1 1 we minimize the Frobenius norm � �� � { y k } K min λ ≈ � L N � � 1 � { x k } N frob 1 � � � � � � { y k } K { y k } K { x k } N Φ N = L N Φ N s.t. 1 1 1 Efficient Matlab implementation of a bound-constrained nonlinear least-squares optimization problem by projected Gauss-Newton dogleg trust-region method Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 14 / 23

  15. Alternative optimization algorithm: square 231 points (total degree 20) Lebesgue constant: 7 . 74 (Padua-points: 9 . 20; “best”: 8 . 14 !!) 1 0.8 0.6 0.4 0.2 0 � 0.2 � 0.4 � 0.6 � 0.8 � 1 � 1 � 0.8 � 0.6 � 0.4 � 0.2 0 0.2 0.4 0.6 0.8 1 Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 15 / 23

  16. Alternative optimization algorithm: L-shape 231 points (total degree 20) Lebesgue constant: 15 . 34 1 0.8 0.6 0.4 0.2 0 � 0.2 � 0.4 � 0.6 � 0.8 � 1 � 1 � 0.8 � 0.6 � 0.4 � 0.2 0 0.2 0.4 0.6 0.8 1 Van Barel, Humet, Sorber (KU Leuven) Multivariate polynomial interpol. and approx. Cagliari, September 5, 2013 16 / 23

Recommend


More recommend