gmunu toward multigrid based einstein
play

Gmunu : Toward multigrid based Einstein field equations CHEONG, - PowerPoint PPT Presentation

Gmunu : Multigrid methods for solving Einstein Gmunu : Toward multigrid based Einstein field equations CHEONG, Chi-Kit field equations solver for (Patrick) Tjonnie G. F. LI, general-relativistic hydrodynamics L. M. LIN simulations


  1. Gmunu : Multigrid methods for solving Einstein Gmunu : Toward multigrid based Einstein field equations CHEONG, Chi-Kit field equations solver for (Patrick) Tjonnie G. F. LI, general-relativistic hydrodynamics L. M. LIN simulations Introduction Methods TAUP2019 Results Covergence properties Code test Conclusions CHEONG, Chi-Kit (Patrick) Backup slides Tjonnie G. F . LI, L. M. LIN Department of Physics The Chinese University of Hong Kong Sep 12 2019

  2. Gmunu : Multigrid Outline methods for solving Einstein field equations CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, Introduction L. M. LIN Introduction Methods Methods Results Covergence properties Results Code test Conclusions Covergence properties Backup slides Code test Conclusions Backup slides

  3. Gmunu : Multigrid Introduction methods for solving Einstein field equations CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, L. M. LIN ◮ Implementation details of Gmunu (P . C. K. CHEONG Introduction et al., in prep.) Methods ◮ Application of Gmunu (H. Y. NG et al.,Talk on Results Covergence properties Tuesday, in prep.) Code test ◮ Why numerical simulations Conclusions Backup slides ◮ Introduction of CCSNe and its gravitational waves ◮ Develop a code for: ◮ Core-collapse supernovae ◮ Isolated Neutron stars

  4. Gmunu : Multigrid Introduction methods for solving Einstein field equations CHEONG, Chi-Kit Relativistic (Case GR) (Patrick) F Newtonian with modified Tjonnie G. F. LI, F TOV potential and rotation L. M. LIN corrections (Case Arot) Introduction Methods H 1 H 1 H 2 Results H 2 Covergence properties Code test Conclusions Backup slides 1 2 3 4 5 6 7 8 9 f [kHz] B. Muller, et al. 2008 General relativistic simulations is needed!

  5. Gmunu : Multigrid Introduction methods for solving Einstein field equations CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, Different ways to solve Einstein equations L. M. LIN ◮ “free-evolution” formulations Introduction ◮ constrained formulation Methods Results ◮ elliptic sector and hyperbolic sector Covergence properties Code test Conformally fatness approximation (CFC) is applied Conclusions successfully in various astrophysical problems even in Backup slides spherical-polar coordinate However... ◮ high computational cost for elliptic equations ◮ on the fly simulation?

  6. Gmunu : Multigrid Conformally flatness approximation methods for solving Einstein CFC approximation field equations − α 2 + β i β i CHEONG, Chi-Kit  β 1 β 2 β 3  (Patrick) Tjonnie G. F. LI, ϕ 4 β 1 0 0 L. M. LIN   g µν =  ϕ 4 r 2  β 2 0 0   Introduction ϕ 4 r 2 sin 2 θ β 3 0 0 Methods Results 5 100 Covergence properties ρ max (10 14 g cm − 3 ) A1B3G3 A1B3G3 50 4 Code test h + R (cm) 0 -50 3 Conclusions -100 2 -150 Backup slides -200 50 ρ max (10 13 g cm − 3 ) 6 A2B4G1 A2B4G1 0 h + R (cm) 4 -50 full GR full GR -100 2 CFC CFC -150 5 ρ max (10 14 g cm − 3 ) 30 A1B3G5 A1B3G5 h + R (cm) 20 4 10 0 3 -10 2 -20 -5 0 5 10 15 -5 0 5 10 15 t - t bounce (ms) t - t bounce (ms) Ott, et al. 2006

  7. Gmunu : Multigrid xCFC scheme methods for solving Einstein field equations CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, Cordero-Carrion et al. (2009) L. M. LIN ∆ X i + 1 ∇ i � ∇ j X j � Introduction = 8 π ˜ ˜ ˜ ˜ S i 3 Methods ∇ j X i − 2 Results ∇ i X j + ˜ A ij ≈ ˜ ˜ ∇ k X k f ij ˜ Covergence properties 3 Code test Eψ − 1 − 1 Conclusions A kl ˜ ∆ ψ = − 2 π ˜ ˜ 8 f ik f jl ˜ A ij ψ − 7 Backup slides � ψ − 2 + 7 � � � A kl ˜ ˜ E + 2 ˜ ˜ 8 f ik f jl ˜ A ij ψ − 8 ∆( αψ ) = ( αψ ) 2 π S ∆ β i + 1 ∇ i � ∇ j β j � = 16 παψ − 6 f ij ˜ A ij ˜ ˜ ˜ ˜ S i + 2 ˜ αψ − 6 � � ∇ j 3

  8. Gmunu : Multigrid Boundary condiditon methods for solving Einstein field equations CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, L. M. LIN Robin B. C. Introduction Methods ∂ψ r max = 1 − ψ � Results � ∂r r Covergence properties � Code test ∂α r max = 1 − α � Conclusions � ∂r � r Backup slides β i � r max = 0 � �

  9. Gmunu : Multigrid Code features methods for solving Einstein field equations Gmunu ( G eneral-relativistic mu ltigrid nu merical Einstein CHEONG, Chi-Kit solver) (Patrick) Tjonnie G. F. LI, ◮ 3+1 in Spherical polar coordinates (1,2,3-D) L. M. LIN ◮ Hydro: high-resolution shock-capturing (HRSC) Introduction methods Methods ◮ Reconstruction method: Piecewise-Constant (PC), Results Covergence properties TVD, (5-th order)WENO, MP5 Code test ◮ Riemann solver: HLL, HLLE, Marquina Conclusions ◮ Time update: RK3 methods Backup slides ◮ Conserved variables to Primitive variables: Regula-Falsi method ◮ Conformally flatness condition(CFC) metric evolution: ◮ extended CFC (xCFC) scheme (Cordero-Carrion et al. (2009)) ◮ Multigrid solver for the elliptic non-linear coupled equations

  10. Gmunu : Multigrid Key features of our MG solver methods for solving Einstein field equations ◮ Nonlinear FAS (Full Approximation Storage) CHEONG, Chi-Kit (Patrick) algorithm Tjonnie G. F. LI, L. M. LIN ◮ Cycles options: V, W and F Introduction ◮ Cell-Centered discretization (no grid communication Methods is needed) Results ◮ Smoother: Red-Black Gauss-Seidel relaxation Covergence properties Code test ◮ Prolongation: bi-linear Conclusions Backup slides ◮ Restriction: piecewise constant

  11. Gmunu : Multigrid Models methods for solving Einstein field equations Table: Γ = 2 , K = 100 , ( c = G = M sun = 1) . CHEONG, Chi-Kit (Patrick) Tjonnie G. F. LI, ρ c [10 − 3 ] Ω [10 − 2 ] Model L. M. LIN BU0 1 . 28 0 . 000 Introduction SU 8 . 00 0 . 000 Methods 1 . 28 1 . 509 BU2 Results BU8 1 . 28 2 . 633 Covergence properties Code test Conclusions Backup slides

  12. Gmunu : Multigrid Convergence properties methods for solving Einstein ◮ solving the α of BU8 with initial guess: α = 1 field equations ◮ n r × n θ = 640 × 64 CHEONG, Chi-Kit (Patrick) ◮ Gauss-Seidel ( ∼ 5 . 3 × 10 5 ) to MG ( ∼ 50 ) Tjonnie G. F. LI, L. M. LIN ◮ O (minus) → O (ms) Introduction Methods Results 10 2 Covergence properties Code test Conclusions 10 0 Backup slides L 1 norm 10 − 2 10 − 4 V 1 V 2 10 − 6 V 3 V 4 V 5 10 − 8 V 6 0 10 20 30 40 50 60 Number of iterations

  13. Gmunu : Multigrid Model: BU0 methods for solving Einstein ◮ n r × n θ = 640 × 64 field equations CHEONG, Chi-Kit 0 , π ◮ r = [0 , 30] , θ = � � (Patrick) 2 Tjonnie G. F. LI, L. M. LIN 5 . 0 [ ρ c ( t ) /ρ c (0) − 1] × 10 4 2 . 5 Introduction 0 . 0 Methods − 2 . 5 Results Covergence properties − 5 . 0 Code test − 7 . 5 Conclusions − 10 . 0 Backup slides 0 2 4 6 8 10 12 t (ms) FFT of v r ( t ) and v θ ( t ) FFT( v r ) 0 . 06 FFT( v θ ) F 0 . 04 H 1 H 2 H 3 0 . 02 0 . 00 1000 2000 3000 4000 5000 6000 7000 8000 f (Hz)

  14. Gmunu : Multigrid Model: SU methods for solving Einstein field equations Migration test: unstable -> stable NS CHEONG, Chi-Kit (Patrick) ◮ n r × n θ = 1024 × 1 (1D simulation) Tjonnie G. F. LI, L. M. LIN ◮ r = [0 , 34] Introduction Methods 1 . 0 Results Covergence properties 0 . 8 Code test Conclusions ρ c ( t ) /ρ c (0) Backup slides 0 . 6 0 . 4 0 . 2 0 . 0 0 2 4 6 8 t (ms)

  15. Gmunu : Multigrid Model: BU2 methods for solving Einstein ◮ n r × n θ = 640 × 64 field equations CHEONG, Chi-Kit 0 , π ◮ r = [0 , 30] , θ = � � (Patrick) 2 Tjonnie G. F. LI, L. M. LIN 5 . 0 [ ρ c ( t ) /ρ c (0) − 1] × 10 4 2 . 5 Introduction 0 . 0 Methods − 2 . 5 Results Covergence properties − 5 . 0 Code test − 7 . 5 Conclusions − 10 . 0 Backup slides 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 12 . 5 15 . 0 17 . 5 20 . 0 t (ms) 0 . 08 FFT of v r ( t ) and v θ ( t ) FFT( v r ) FFT( v θ ) 0 . 06 F H 1 0 . 04 2 f 2 p 1 0 . 02 i 2 0 . 00 0 1000 2000 3000 4000 5000 6000 f (Hz)

  16. Gmunu : Multigrid Model: BU2 methods for solving Einstein ◮ n r × n θ = 640 × 64 field equations CHEONG, Chi-Kit 0 , π ◮ r = [0 , 30] , θ = � � (Patrick) 2 Tjonnie G. F. LI, L. M. LIN T max = 20 ms Introduction 1 . 0 equatorial initial Methods equatorial Results 0 . 8 pole initial Covergence properties Code test pole Conclusions 0 . 6 Backup slides ρ/ρ c 0 . 4 0 . 2 0 . 0 0 5 10 15 20 r (km)

  17. Gmunu : Multigrid Model: BU2 methods for solving Einstein ◮ n r × n θ = 640 × 64 field equations CHEONG, Chi-Kit 0 , π ◮ r = [0 , 30] , θ = � � (Patrick) 2 Tjonnie G. F. LI, L. M. LIN T max = 20 ms Introduction 1 . 0 equatorial initial Methods equatorial Results 0 . 8 Covergence properties � Code test v φ v φ Conclusions �� 0 . 6 Backup slides v φ v φ / max 0 . 4 � 0 . 2 0 . 0 0 5 10 15 20 r (km)

  18. Gmunu : Multigrid Model: BU8 methods for solving Einstein ◮ n r × n θ = 640 × 64 field equations CHEONG, Chi-Kit 0 , π ◮ r = [0 , 30] , θ = � � (Patrick) 2 Tjonnie G. F. LI, L. M. LIN 2 [ ρ c ( t ) /ρ c (0) − 1] × 10 4 0 Introduction − 2 Methods − 4 Results Covergence properties − 6 Code test − 8 Conclusions − 10 Backup slides 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 12 . 5 15 . 0 17 . 5 20 . 0 t (ms) 0 . 4 FFT of v r ( t ) and v θ ( t ) FFT( v r ) FFT( v θ ) 0 . 3 F H 1 0 . 2 2 f 0 . 1 0 . 0 0 1000 2000 3000 4000 5000 6000 f (Hz)

Recommend


More recommend