global warming energy use and ghg emissions
play

Global Warming, Energy Use and GHG Emissions Energy Use 2013 EIA - PowerPoint PPT Presentation

J OINT C ENTER FOR E NERGY S TORAGE R ESEARCH Addressing Climate Change with Next- Generation Energy Storage Research George Crabtree Director, JCESR University of Illinois at Chicago Argonne National Laboratory Outline Greenhouse Gasses


  1. J OINT C ENTER FOR E NERGY S TORAGE R ESEARCH Addressing Climate Change with Next- Generation Energy Storage Research George Crabtree Director, JCESR University of Illinois at Chicago Argonne National Laboratory Outline Greenhouse Gasses from Electricity and Transportation Reducing Emissions with Energy Storage JCESR: A New Paradigm for Next-Generation Battery R&D Highlights: Mg-ion battery What One Person Can Do To Tend the Earth Loyola University Climate Change Conference Chicago IL March 19, 2015

  2. Global Warming, Energy Use and GHG Emissions Energy Use 2013 EIA Monthly Energy Review Table 2.1 (May 2014) GHG Emissions 2012 EPA http://www.epa.gov/climatechange / ghgemissions/sources/electricity.ht ml IPCC AR5 2014 ~ 60% o f e ne rg y use a nd GHG e missio ns fro m e le c tric ity a nd tra nspo rta tio n

  3. Conventional Transportation CAFE Standards 1978 - 2026 Cars Trends are positive Cars are becoming more efficient We drive less Trucks http://www.c2es.org/federal/executive/vehicle- Trillions of Miles standardsAgreement 2ith 13 automakers, Aug 28, 2012 2008-2009 Vehicle Miles Driven 1971 – 2014 blue=recession 1971 2014 http://2.bp.blogspot.com/- wGRACDgtnC0/U6rny_IFHGI/AAAAAAAAfhI/ybr8m _o1oog/s1600/VehicleMilesApr2014.jpg

  4. Electrified Transportation c o a l, g a s e le c tric ity e le c tric mo to r pro duc tio n re pla c e s g a so line e ng ine re ne wa b le , nuc le a r e le c tric ity battery pro duc tio n e - re fo rming me tha ne CH 4 tesla motors + + + O 2 + + H 2 re ne wa b le + + + hydro g e n H 2 O fuel cell pro duc tio n hydrogen storage b re akthro ug hs ne e de d x2-5 hig he r e ne rg y de nsity in b a tte rie s c a ta lysts, me mb ra ne s a nd e le c tro de s in fue l c e lls Re ne wa b le e le c tric ity o r hydro g e n pro duc tio n

  5. electrons How Much Better are Electric Cars? Ca rb o n Dio xide E missio ns E le c tric vs Ga so line Ca rs ions 1200 300 1000 Ga so line Carbon Dioxide Emissions of c a rs 800 Grams CO 2 /kWh 200 Electricity Generation by Source Grams CO 2 /km 600 Carbon Dioxide Emissions of 400 100 Electric Cars by Generation Source 200 0 0 Hydro Geothermal Gas Nuclear Solar Solar Nuclear wind Coal Oil wind Hydro Geothermal Coal Gas Oil UCS State of Charge (2012) http://www.ucsusa.org/assets/documents/clean_vehicles/ele ctric-car-global-warming-emissions-report.pdf 5

  6. electrons How Much Better are Electric Cars? E ne rg y Use a nd Ope ra ting Co st E le c tric vs Ga so line Ca rs ions E ne rg y Use Ope ra ting Co st 4.00 0.12 Gasoline Gasoline cars 3.00 Cars 0.09 @USD $3.50/gal MJ/km USD $/km 2.00 Energy Efficiency of 0.06 Operating Cost of Electric Electric and Gasoline Cars and Gasoline Cars 1.00 0.03 0 @USD $0.06-0.18/kWh 0 Nissan Mitsubushi T Ford Leaf Chevy Volt Focus Nissan Ford Chevy Mitsubushi T Leaf Focus Volt 6

  7. Electric Car Challenges Rang e 5x hig he r b a tte ry e ne rg y de nsity Che vy Vo lt: 38 mile s o n sing le c ha rg e Nissa n L e a f: 63 mile s o n sing le c ha rg e Ho nda Ac c o rd: 400 mile s o n sing le ta nk 80 kWh 16 kWh x5 Purc hase Pric e (2012) 5x lo we r b a tte ry c o st Che vy Vo lt: $39 990 -$46 265 Nissa n L e a f: $35 200 - $37 250 $ Ho nda Ac c o rd: $24 030 - $31 930 $ 1/ 5 Adde d c o st drive n b y la rg e b a tte rie s 7

  8. Wind and Solar Electricity ✓ Sta b le c lima te 60 ✓ E ne rg y se c urity US Wind and Solar 50 Electricity 40 Cumulative Installed Capacity GW 30 Ave output: 17 GW ~ 3.8% of US ave use: 450 GW US electricity 20 15% growth/yr  40% wind and solar wind electricity by 2030 Via b le te c hno lo g ie s 10 o n de plo yme nt pa th solar Re maining sc ie nc e c halle ng e s 0 impro ve e ffic ie nc y lo we r c o st

  9. Energy Storage Enables Variable Wind and Solar Generation demand g a s pla nt wind output Ba c k up the wind fa rm with http://www.windbyte.co.uk/windpower.html One o r two c a lm da ys pe r mo nth Wind stro ng e r a t nig ht Wind do e s no t fo llo w diurna l pa tte rn b a tte ry $ = 5x g a s pla nt $

  10. Energy Storage Cleans the Electricity Grid Total UK discharge Electricity Demand battery c le a n, peak dirty, e xpe nsive ine xpe nsive g e ne ra tio n power g e ne ra tio n (re la tive ly) c le a n dispatchable power ine xpe nsive g e ne ra tio n charge e.g., combined cycle battery natural gas base load coal, nuclear T ipping po int c o st o f b a tte rie s le ss tha n c o st o f pe a ke r pla nt

  11. JCESR Has Transformative Goals Visio n T ra nsfo rm tra nspo rta tio n a nd the e le c tric ity g rid with hig h pe rfo rma nc e , lo w c o st e ne rg y sto ra g e TRANSPORTATION $100/ kWh Missio n 400 Wh/kg 400 Wh/L De live r e le c tric a l e ne rg y sto ra g e with five time s the e ne rg y 800 W/kg 800 W/L de nsity a nd o ne -fifth the c o st o f to da y’ s c o mme rc ia l b a tte rie s 1000 cycles within five ye a rs 80% DoD C/5 15 yr calendar life L e gac ie s • A libra ry of the funda me nta l sc ie nc e o f the ma te ria ls a nd EUCAR phe no me na o f e ne rg y sto ra g e a t a to mic a nd mo le c ula r le ve ls GRID $100/ kWh • T wo prototype s, one for tra nsporta tion a nd one for the e le c tric ity g rid , tha t, whe n sc a le d up to ma nufa c turing , ha ve the po te ntia l 95% round-trip efficiency at C/5 rate to me e t JCE SR’ s tra nsfo rma tive g o a ls 7000 cycles C/5 • A ne w pa ra dig m for ba tte ry R&D tha t inte g ra te s disc o ve ry 20 yr calendar life sc ie nc e , b a tte ry de sig n, re se a rc h pro to typing a nd Safety equivalent to a ma nufa c turing c o lla b o ra tio n in a sing le hig hly inte ra c tive natural gas turbine o rg a niza tio n

  12. JCESR Creates a New Paradigm for Battery R&D MATERIALS PROJECT TDTs CROSSCUTTING Multivalent Intercalation SCIENCE Cell Design Systems Commercial Chemical Transformation and Analysis and Deployment Prototyping Translation Non-Aqueous Redox Flow Manufac turing Re se arc h Batte ry Disc o ve ry Sc ie nc e Co llab o ratio n Pro to typing De sig n ++ ELECTROCHEMICAL DISCOVERY LAB Wet and dry electrochemical interfaces • Model single crystals • TECHNO-ECONOMIC MODELING Practical nanoparticles “Building battery systems on the computer”

  13. Lithium Ion Battery Technology

  14. JCESR’s Beyond Lithium-ion Concepts Black, Adams, Nazar, Adv. Energy Mater 2, 801 (2012) L ithium-io n “Ro c king Cha ir” Che mic a l T ra nsfo rma tio n i + c yc le s b e twe e n a no de a nd c a tho de , L Re pla c e inte rc a la tio n with hig h e ne rg y sto ring a nd re le a sing e ne rg y c he mic a l re a c tio n: L i-S, L i-O, Na -S, . . . Mg ++ Multiva le nt I nte rc a la tio n No n-a q ue o us Re do x i + with F lo w Re pla c e mo no va le nt L Re pla c e so lid e le c tro de s with liq uid so lutio ns o r suspe nsio ns: di- o r tri-va le nt io ns: Mg ++ , Al +++ , . . . lo we r c o st, hig he r c a pa c ity, g re a te r fle xib ility Do ub le o r triple c a pa c ity sto re d a nd re le a se d 14

  15. Beyond Lithium Ion Opportunity Space is Large, Unexplored and Rich Fluid cathode Chemical Transformation Three energy storage concepts Intercalant mostly 50-100 potential batteries unknown Systems electrolyte Solid Beyond Liquid Li-ion Fluid anode Intercalant/Allo y transformational advances Metal mostly known electrodes Intercalant Li-ion Oxide Quinoxaline Quinoxoline Li-O Li Bi, Sn, Triflate, Phosphate-based Metal Ferrocence Spinel Li-S Mg important Oxysulfides Tetraborate ceramics, Coordination Polysulfides incremental Al Layered Na-S Block Co-polymer advances Complexes Graphite, LiCoO 2 Materials LiFePO 4 , LiMnO 2 . . . 15

  16. JCESR Creates a New Paradigm for Battery R&D CROSSCUTTING Multivalent Intercalation SCIENCE Cell Design Systems Commercial Chemical Transformation and Analysis and Deployment Prototyping Translation Non-Aqueous Redox Flow Manufac turing Re se arc h Batte ry Disc o ve ry Sc ie nc e Co llab o ratio n Pro to typing De sig n ++ A sing le hig hly inte ra c tive o rg a niza tio n • F o c us e xc lusive ly o n tra nsfo rma tive te c hno lo g ie s b e yo nd lithium io n • 14 institutio na l pa rtne rs + five funde d c o lla b o ra to rs e mb ra c e the c ha lle ng e • Ne w to o ls to se a rc h the la rg e , ric h a nd une xplo re d b e yo nd lithium io n spa c e • Pursue thre e sto ra g e c o nc e pts with 50-100 po ssib le b a tte ry inc a rna tio ns

  17. 45 Affilia te s at launc h JCESR Team and Affiliates 80+ Affilia te s No v 2014 Affilia te s Da y Marc h 19, 2014 Re g io na l E ve nts Urb ana Oc t 21, 2014 Buffalo No v 5 2014 Affilia te s Ne wsle tte r July 2014 May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure. 17 4/22/2015

  18. Battery Technology Readiness Level (BTRL) BTRL - 1 BTRL - 2 BTRL - 3 BTRL – 5 - 6 BTRL - 4 1-2 YEARS 2-5 YEARS 2-5 YEARS 5-10 YEARS Proof-of-concept prototype Research prototype New class Proven Proven Material scale-up, Scientific of materials performance performance in cell testing and Breakthrough synthesized in half cells lab-scale full cells scale-up to pack De ve lo pe d c o lla b o ra tive ly with JCE SR JCI, NASA-Gle nn, T ARDE C “swe e t spo t” 18

Recommend


More recommend