geodesic snakes
play

Geodesic Snakes Level-Set Evolution CS7960 Advanced Image - PowerPoint PPT Presentation

Geodesic Snakes Level-Set Evolution CS7960 Advanced Image Processing April 8 th , 2010 Jonathan Bronson Content Motivation Implicit Contour Formulation Hypersurface Embedding Examples Conclusions Motivation Drawbacks of


  1. Geodesic Snakes Level-Set Evolution CS7960 Advanced Image Processing April 8 th , 2010 Jonathan Bronson

  2. Content  Motivation  Implicit Contour Formulation  Hypersurface Embedding  Examples  Conclusions

  3. Motivation  Drawbacks of previous Snake formulations:  Explicit Representation  Parameterization / Reparameterization issues  Approximating Discrete Derivatives  Fixed Topology  Extention to 3D very complex (active meshes)

  4. Motivation  New Approach:  Embed contour in higher order surface  Implicit Representation  Insensitive to Topology  Easily extends to 3D

  5. Mathematical Framework  : Speed dC d t =   N N : Normal dC  :Curvature d t =  N

  6. Mathematical Framework  Combining terms simple: d C  d t =  N  Still want:  Ability to slow/stop on edges/lines/etc  Image force term  d C d t = g  I   N  Where have we seen this before?

  7. Mathematical Framework  Anisotropic Diffusion (Perona & Malik)  Use gradient magnitude for diffusion speed 1 − ∥ I ∥ ∇  2  g  I = g  I = e 1  ∥ I ∥ ∇  2 (Quadratic) (Exponential)

  8. Mathematical Formulation  What if we overshoot?  Want to pull toward edges ∂ C N −  ∇ g  I  N   ∂ t = g  I   ⋅ N Advection Term

  9. Embedding Contour C(s,t) into Surface u(x,t)

  10. Embedding u ∈ℜ 3  Embedding function: u  x ,t  C ∈ℜ 2  Contour: C  s ,t  u  C ,t = 0 (Zero level-set) u  x ,t  C  s ,t 

  11. Embedding

  12. Embedding Formulation  How does surface vary over time? u  C  t  ,t = 0 ∂ t   ∂ t    ∂ t    ∂ t  dt u  C  t  ,t =∂ u ∂ C ∂ x ∂ C ∂ y ∂ C ∂ z d Chain Rule ∂ x ∂ y ∂ z dt u  C  t  ,t =∂ u N = −∇ u d ∂ t ∇ u ⋅ dC dC d t =  ∣ ∇ u ∣ dt ∇ u ∇ u dt u  C  t  ,t =∂ u = ∣ ∇ u ∣ d ∂ t − ∣ ∇ u ∣ = 0 ∣ ∇ u ∣ ∂ u ∂ t = ∣ ∇ u ∣ Hamilton-Jacobi Equation for certain speeds 

  13. Interpretation

  14. Summary  Implicit Solution  Solvable using PDE's (stable) Parameterization Free  Seamlessly handles Topological Changes  Extends to 3D in Straightfoward Manner  Common Implementations  Fast Marching Method  Fast Iterative Method

  15. Examples (www.cs.bris.ac.uk)

Recommend


More recommend