. Game-changers: . Detecting shifts in the flow of campaign contributions . University of Rochester . Matthew Blackwell . APWG . March 8th, 2013
.
.
. Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.
. Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.
. Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.
. Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.
.
When do campaign contributions take off or fall flat? . A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data.
. A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data. When do campaign contributions take off or fall flat?
. A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data. When do campaign contributions take off or fall flat?
. Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.
. Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.
. Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.
. Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.
. 0 . 2000 . 1500 . 1000 . 500 . . . 200 . 150 . 100 . 50 . 0 . Why changepoint models?
. The challenges . Modeling daily contribution counts . Choosing the number of changepoints
. The challenges . Modeling daily contribution counts . Choosing the number of changepoints
. 0 . 2500 . 2000 . 1500 . 1000 . 500 . . . Jan 12 . Oct 11 . Jul 11 . Apr 11 . Contributions . Number of . Overdispersion in campaign contributions
๐ ๐ข = exp (๐ ๐ข ๐พ) . (link function) . [๐ง ๐ข |๐พ, ๐, ๐] โผ NegBin (๐, ๐/(๐ + ๐ ๐ข )) . (random effect) . [๐ ๐ข |๐] โผ Gamma (๐, ๐) . . Bayesian model for overdispersed counts . (data) . [๐ง ๐ข |๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . For observations ๐ข in {1, โฆ , ๐} : . marginal distribution of ๐ง :
. (link function) . [๐ง ๐ข |๐พ, ๐, ๐] โผ NegBin (๐, ๐/(๐ + ๐ ๐ข )) . (random effect) . [๐ ๐ข |๐] โผ Gamma (๐, ๐) . . Bayesian model for overdispersed counts . (data) . [๐ง ๐ข |๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . For observations ๐ข in {1, โฆ , ๐} : . marginal distribution of ๐ง : ๐ ๐ข = exp (๐ ๐ข ๐พ)
. (link function) . [๐ง ๐ข |๐พ, ๐, ๐] โผ NegBin (๐, ๐/(๐ + ๐ ๐ข )) . (random effect) . [๐ ๐ข |๐] โผ Gamma (๐, ๐) . . Bayesian model for overdispersed counts . (data) . [๐ง ๐ข |๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . For observations ๐ข in {1, โฆ , ๐} : . marginal distribution of ๐ง : ๐ ๐ข = exp (๐ ๐ข ๐พ)
. (link function) . [๐ง ๐ข |๐พ, ๐, ๐] โผ NegBin (๐, ๐/(๐ + ๐ ๐ข )) . (random effect) . [๐ ๐ข |๐] โผ Gamma (๐, ๐) . . Bayesian model for overdispersed counts . (data) . [๐ง ๐ข |๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . For observations ๐ข in {1, โฆ , ๐} : . marginal distribution of ๐ง : ๐ ๐ข = exp (๐ ๐ข ๐พ)
๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . . . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . (link function) Generalize to a mixture model . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} )
๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . (link function) . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . . Generalize to a mixture model . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ก ๐ข = ๐
Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . (link function) . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . . Generalize to a mixture model . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐
Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . (link function) . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . . Generalize to a mixture model . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐
Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . Generalize to a mixture model . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . (link function) . . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐
Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0 . Generalize to a mixture model . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . (link function) . . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐
. Generalize to a mixture model . . . . (random effect) . [๐ ๐ข |๐, ๐ก ๐ข ] โผ Gamma (๐ ๐ , ๐ ๐ ) . (link function) . . (1, โฆ , ๐ฟ) . regimes . . (data) . [๐ง ๐ข |๐ก ๐ข , ๐ ๐ข , ๐พ, ๐, ๐] โผ Poisson (๐ ๐ข ๐ ๐ข ) . ( โ๐ โ {๐, ๐ + 1} ) ๐ ๐ข = exp (๐ ๐ข ๐พ ๐ ) ๐ก ๐ข = ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ + 1 | ๐ก ๐ข = ๐) = 1 โ ๐ ๐ Pr(๐ก ๐ข+๔ทก = ๐ | ๐ก ๐ข = ๐) = 0
. ๐ ๔ทก . 1 . 2 . 3 . . . 1 โ ๐ ๔ทก . changepoint . โฏ . N . Units (๐พ ๔ทค , ๐ ๔ทค ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (๐พ ๔ทก , ๐ ๔ทก ) . Regimes . (๐พ ๔ทข , ๐ ๔ทข ) . (๐พ ๔ทฃ , ๐ ๔ทฃ ) Must be in the last regime
. ๐ ๔ทก . 1 . 2 . 3 . . . 1 โ ๐ ๔ทก . changepoint . โฏ . N . Units (๐พ ๔ทค , ๐ ๔ทค ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (๐พ ๔ทก , ๐ ๔ทก ) . Regimes . (๐พ ๔ทข , ๐ ๔ทข ) . (๐พ ๔ทฃ , ๐ ๔ทฃ ) Must be in the last regime
. ๐ ๔ทก . 1 . 2 . 3 . . . 1 โ ๐ ๔ทก . changepoint . โฏ . N . Units (๐พ ๔ทค , ๐ ๔ทค ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (๐พ ๔ทก , ๐ ๔ทก ) . Regimes . (๐พ ๔ทข , ๐ ๔ทข ) . (๐พ ๔ทฃ , ๐ ๔ทฃ ) Must be in the last regime
. ๐ ๔ทก . 1 . 2 . 3 . . . 1 โ ๐ ๔ทก . changepoint . โฏ . N . Units (๐พ ๔ทค , ๐ ๔ทค ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (๐พ ๔ทก , ๐ ๔ทก ) . Regimes . (๐พ ๔ทข , ๐ ๔ทข ) . (๐พ ๔ทฃ , ๐ ๔ทฃ ) Must be in the last regime
. ๐ ๔ทก . 1 . 2 . 3 . . . 1 โ ๐ ๔ทก . changepoint . โฏ . N . Units (๐พ ๔ทค , ๐ ๔ทค ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (๐พ ๔ทก , ๐ ๔ทก ) . Regimes . (๐พ ๔ทข , ๐ ๔ทข ) . (๐พ ๔ทฃ , ๐ ๔ทฃ ) Must be in the last regime
Recommend
More recommend