galactic radio loops
play

Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio - PowerPoint PPT Presentation

Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Foregrounds in B-modes Adam et al. , arXiv:1502.01588 (Planck 2015 results X) Adam et al. , arXiv:1502.01588


  1. Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017

  2. Foregrounds in B-modes Adam et al. , arXiv:1502.01588 (Planck 2015 results X) Adam et al. , arXiv:1502.01588 (Planck 2015 results X) Adam et al. , 1409.5738 (Planck Int. results XXX)

  3. Haslam 408 MHz Haslam et al. , A&AS 47 (1982) 1

  4. The galactic radio background… … is predominantly synchrotron of CR electrons on the galactic magnetic fields… wher e and … and we look at its line-of-sight projections:

  5. Ingredients CR electrons: • sources: SNRs! pulsars? PWNe? large-scale distribution?! • conceptual: stochasticity of sources? • propagation: diffusive! convective? reacceleration? energy losses? Galactic magnetic • large-scale, ordered component fields: • anisotropic random (also called striated ) component • small-scale, turbulent component

  6. Local e - spectrum and synchrotron Strong et al. , A&A 534 (2011) A54 • require break in IS electron spectrum, e.g. at source: • fix local (turbulent) magnetic field: • constrain certain propagation models, e.g. disfavour reacceleration

  7. Haslam vs GALPROP averaging over large parts of the sky… • assumes factorisation in longitude and latitude • leads to loss of sensitivity for structures on intermediate scales

  8. Difference: Haslam - GALPROP

  9. Angular power spectrum 1. radio sky: 1. spherical harmonics: 2. angular power spectrum: advantages: • information ordered by scale • statistically meaningful quantities • natural for some applications, e.g. CMB foreground subtraction

  10. Haslam APS 1. even/odd structure reflects symmetries of sky map 1 3 2 2. smoother for higher multipoles 3. power-law with (Kolmogorov turbulence)

  11. Smooth component only… Mertsch & Sarkar, JCAP 06 (2013) 041 synchrotron: smooth emissivity (GALPROP) free-free: WMAP MEM-template unsubtracted sources: shot noise

  12. Smooth component only… Mertsch & Sarkar, JCAP 06 (2013) 041 synchrotron: smooth emissivity (GALPROP) free-free: WMAP MEM-template unsubtracted sources: shot noise

  13. Deficit in RM Beck et al. , JCAP 05 (2016) 056 3 3 Observation O12 O12 ) L max =30pc Angular Powerspectrum log(C l / C l 2 2 L max =100pc L max =300pc L max =1kpc L max =3kpc 1 1 0 0 -1 -1 -2 -2 1 1 10 10 100 100 Spherical harmonics l

  14. Turbulence cascade • plasma perturbations described by MHD modes, e.g. Alfvén waves • two-point correlation function: Fourier transform ➙ power spectrum: • r • observed in space plasma and simulations for with (Kolmogorov turbulence)

  15. Scaling the synchrotron emissivity • GALPROP assumes a smooth distribution of RMS values for the turbulent field: • can rescale GALPROP’s volume emissivity • compute small-scale turbulent field • scaling factor • exploit scaling of synchrotron emission with to find:

  16. Turbulence in projection • consider two-point correlations on sphere • power-law in wavenumber reflected by power-law in angle (or multipole ) Chepurnov, Astron. Astrophys. Transact. 17 (1999) 281

  17. …including turbulent component Mertsch & Sarkar, JCAP 06 (2013) 041 synchrotron: smooth emissivity and turbulence power-law in wavenumber free-free: reflected by power-law in WMAP MEM-template angle or multipole : unsubtracted sources: Chepurnov, Astron. Astrophys. shot noise Transact. 17 (1999) 281; also: Cho & Lazarian, ApJ 575 (2002) 63; Regis, Astropart. Phys. 35 (2011) 170

  18. Radio loops • probably shells of old SNRs Page et al. , ApJS 170 (2007) • can only observe 4 radio loops directly in radio sky • total Galactic population of up to 335 O(1000) can contribute on all scales

  19. Radio loops

  20. Haslam 408 MHz Haslam et al. , A&AS 47 (1982) 1

  21. Haslam - GALPROP

  22. Unsharp masked Haslam Vidal et al. , MNRAS 452 (2015) 656

  23. WMAP9 polarisation Bennett al. , ApJS 208 (2013) 20

  24. WMAP9 23 GHz polarisation Page et al., ApJS 170 (2007) 335

  25. Planck 30 GHz polarisation Planck collaboration

  26. Modelling individual shells Mertsch & Sarkar, JCAP 06 (2013) 041 assumption: flux from one shell factorises into angular part and frequency part: frequency part : magnetic field gets compressed in SNR shell electrons get betatron accelerated emissivity increased with respect to ISM angular part : assume constant emissivity in thin shell:

  27. Modelling individual shells Mertsch & Sarkar, JCAP 06 (2013) 041 assumption: flux from one shell factorises into angular part and frequency part: frequency part : magnetic field gets compressed in SNR shell electrons get betatron accelerated emissivity increased with respect to ISM angular part : assume constant emissivity in thin shell: add up contribution from all shells

  28. …including ensemble of shells Mertsch & Sarkar, JCAP 06 (2013) 041 O(1000) shells of old SNRs present in Galaxy we know 4 local shells (Loop I-IV) but others are modeled in MC approach they contribute exactly in the right multipole

  29. Best fit of local shells and ensemble Mertsch & Sarkar, JCAP 06 (2013) 041 O(1000) shells of old SNRs present in Galaxy we know 4 local shells (Loop I-IV) but others are modeled in MC approach they contribute exactly in the right multipole

  30. Anomalies in ILC9 (l≤20) Liu, Mertsch & Sarkar, ApJL 789 (2014) 29

  31. Mean temperature • WMAP 9yr ILC map • smoothing to l ≤ lmax = 20 • 4° wide band around Loop I (Berkhuijsen et al., 1971) • compute <T> • p-values from 10 4 simulations with WMAP 9yr best-fit APS p-value: 0.01 (ILC9 and SMICA)

  32. Clustering analysis • 20° wide band around Loop • distance modulus map: G j =|arccos(n j . n ctr )-radius| • Pearson’s correlation coefficient: • p-values from 10 4 simulations with WMAP 9yr best-fit power spectrum p-value: 4 × 10 -4 (ILC9) … 1 × 10 -3 (SMICA)

  33. What do we know about anomaly? • spatially correlates with Loop I • unlikely synchrotron (checked with our synchrotron model) • frequency dependence: 1. ILC method efficiently suppresses power laws in frequency: over most of the sky: synch free-free thermal dust in the Loop I region 2. pixelwise correlation between WMAP W- and V-bands with ICL9: Liu, PM & Sarkar, ApJL 789 (2014) 29

  34. Magnetic dipole radiation close to black body, i.e. what is assumed to uniquely define CMB! Draine & Lazarian, ApJ 508 (1998) 157, ibid., ApJ 512 (1999) 740 Draine & Hensley, ApJ 765 (2013) 169

  35. Magnetised dust in SMC thermal dust typical spinning dust low- foreground magnetic dust very flat spectra, ; dependence on compound, grain size, shape… Draine & Hensley, ApJ 757 (2012) 103

  36. Summary 1. Lack of angular power in the Galactic radio background for ℓ=10…100 2. Small-scale turbulence cannot explain it 3. A population of O(1000) shells from old supernova remnants provides the angular power needed 4. Excess in CMB map. Magnetised dust?

Recommend


More recommend