g del hashing
play

Gdel Hashing matt.might.net @mattmight Disclaimer simple, fun - PowerPoint PPT Presentation

Gdel Hashing matt.might.net @mattmight Disclaimer simple, fun idea simple, fun idea works well in practice, simple, fun idea works well in practice, but theory says it will not. An old problem An


  1. Gödel Hashing matt.might.net @mattmight

  2. Disclaimer

  3. “simple, fun idea”

  4. “simple, fun idea” “works well in practice,”

  5. “simple, fun idea” “works well in practice,” “but theory says it will not.”

  6. An old problem An older solution A big impact

  7. An old problem

  8. “CFA is slow!”

  9. An older solution

  10. Gödel hashing functional monotonic compact dynamic incremental perfect Inspired by a true theorem.

  11. Word-level parallelism!

  12. Great cache behavior!

  13. A big impact

  14. Minutes of work

  15. 2x

  16. 2x 5x

  17. 2x 5x 8x

  18. 2x 5x 8x 100x

  19. Motivation

  20. (f x)

  21. f(x)

  22. What is ? f

  23. Wh y not run the program?

  24. e

  25. e

  26. e

  27. e What is f , here ?

  28. e What is f , here ?

  29. e ...

  30. e AAM ...

  31. e ...

  32. e

  33. e

  34. Problem

  35. � � � � � � � � � � � � � � � � � � � � � � � � � � � � ˆ � � ς 1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

  36. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

  37. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

  38. v

  39. v

  40. ˆ ˆ ς 2 ς 1 v

  41. ς 1 = ( e, ˆ ρ , ˆ σ , ˆ κ ) ˆ ˆ σ

  42. expression store = ( e, ˆ ρ , ˆ σ , ˆ κ ) ˆ ˆ σ ς 1 environment stack

  43. expression store = ( e, ˆ ρ , ˆ σ , ˆ κ ) ˆ ˆ σ ς 1 environment stack

  44. σ : [ Addr → P ( \ [ ( \ ˆ Value ) Addr Value )

  45. ( \ Value ) Addr [

  46. [ ( \ Addr Value )

  47. First: Hash sets

  48. Prime decomposition

  49. Primes p 1 p 3 p 2 p 4

  50. Primes p 1 p 3 p 2 p 4

  51. p 3 p 4

  52. p 3 p 4

  53. p 3 p 4 ×

  54. } { ,

  55. } { ,

  56. ⊆ A B

  57. [ [ ] ] [ [ ] ] = 0 mod A B

  58. A B ∩

  59. ( [ [ ] ] [ [ ] ] ) gcd A B ,

  60. lcm ( [ [ ] ] [ [ ] ] ) A B ,

  61. A B ∪

  62. A A B ∪

  63. A A B −

  64. [ [ A / ] ] ( [ [ ] ] [ [ ] ] ) gcd A B ,

  65. > ⊥

  66. > prime basis ⊥

  67. m 1 m 2 m 3 . . . n = p 1 p 2 p 3

  68. G } { n = , ,

  69. p 1 p 3 p 4

  70. p 1 p 3 p 4

  71. t y x

  72. lcm ( [ [ ] ] [ [ ] ] ) y x ,

  73. v y x

  74. [ [ ] ] [ [ ] ] = 0 mod x y

  75. u x y

Recommend


More recommend